Document No.: 031-MP23SB-00

APPROVAL SHEET

Product	Battery Protect Solution IC		
Product code	MP23SB (001-MP23SB-00)		
Production Form	TEP - 5L,BD54		
The number of copies	4 copies (1copies return to us)		
Date of Registration	October. 19. 2009		

Approved By Customer:		

Issued	Checked	Approved
Olise	Africa	She
Y.H CHAE	S.W PARK	Y.S Kim
10/19	10/19	10/19

Room 2504 International Science & Technology Building, Shen Nan Road, Futian, Shen Zhen

TEL:+86-0755-83957788 / +86-0755-82566617

FAX:+86-0755-23919567 E_mail:li@itm-cn.com

■ Contents

1. Features	Page 1
2. Outline	Page 2
3. Pin Assignment	Page 3
4. Block Diagram	Page 3
5. Absolute Maximum Rating	Page 4
6. Electrical Characteristics	Page 4
7. Measuring Circuit	Page 7
8. Operation	Page 8
1) Overcharge detector (VD1)	Page 8
2) Overdischarge detector (VD2)	Page 8
Discharge overcurrent detector, Short detector (VD3, Short Detector)	Page 9
4) Charger overcurrent detector	Page 9
9. Application Circuit	Page 10
10. Timing Chart	Page 11
11. Packing Spec	Page 13
12. Package Description	Page 15
13. Marking Contents	Page 16

■ Features

- 1. The protection IC and The Dual-Nch MOSFET to use common Drain are integrated into One-packaging IC.
- 2. Reduced Pin-Count by fully connecting internally.
- 3. Application Part
- 1) Protection IC
 - ① Uses high withstand voltage CMOS process.
 - The charger section can be connected up to absolute maximum rating 32V.
 - 2 Detection voltage precision
 - Overcharge detection voltage

- Overdischarge detection voltage

- Discharging overcurrent detection voltage

- Charging overcurrent detection voltage

- 3 Built-in detection delay times
 - Overcharge detection delay time

- Overdischarge detection delay time

- Discharging overcurrent detection delay time

- Charging overcurrent detection delay time

- Short detection delay time

$$300[+200, -70]\mu s$$
 (Ta=25°C)

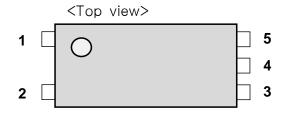
- 4 0V charge function allowed
- 2) FET
 - ① Using advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltage as low as 2.5V while retaining a 12V $V_{GS(MAX)}$.
 - 2 The protection for ESD
 - 3 Common drain configuration
 - 4 General characteristics
 - V_{DS} (V) = 20V
 - $I_D (A) = 6.0A$
 - $R_{SS(ON)} < 50 m\Omega (V_{GS} = 3.9V, I_D = 5A)$
 - ESD Rating: 2000V HBM

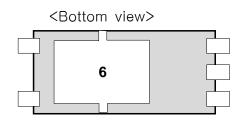
MP23SB

■ Outline

This is a battery protect solution IC which is integrated with built-in the protection IC to use a lithium ion/lithium polymer secondary batteries developed for 1-cell series and Dual-Nch MOSFET. It functions to protect the battery by detecting overcharge, overdischarge, discharge overcurrent, charge overcurrent and other abnormalities as turning off internal Nch MOSFET. The protection IC is composed of four voltage detectors, short detection circuit, reference voltage sources, oscillator, counter circuit and logical circuits.

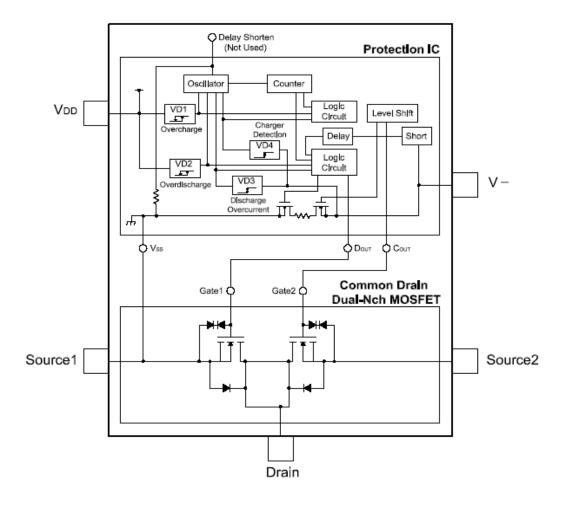
The C_{out} pin (charge FET control pin) and D_{out} pin (discharge FET control pin) outputs are CMOS output, and can drive the internal Nch MOSFET directly. The C_{out} output becomes low level after delay time fixed in the IC if overcharge is detected. The D_{out} output becomes low level after delay time fixed in the IC if overdischarge, discharge overcurrent or short is detected.


On overcharge state, if the V_{DD} voltage is less than the overcharge release voltage, the C_{OUT} output becomes high level after delay time fixed in the IC. On overdischarge state, if the voltage of the battery rises more than the overdischarge detection voltage with connecting the charger, the D_{OUT} output becomes high level after delay time fixed in the IC. Charging current can be supplied to the battery discharged up to OV.


Once discharge overcurrent or short have been detected, if the state of discharge overcurrent or short is released by opening the loads, the D_{OUT} output becomes high level after delay time fixed in the IC. On overdischarge state, the supply current is reduced as less as possible. Once charge overcurrent has been detected, the state of charge overcurrent is released by opening the charger and setting the load.

Battery Protect Solution IC MP23SB

■ Pin Assignment


[Package: TEP-5L]

1	N.C
2	Source 1(same as Vss)
3	Source 2
4	V _{DD}
5	V-
6	Drain

■ Block Diagram

MP23SB

■ Absolute Maximum Rating

 $\times T_{OPR}=25^{\circ}C$, Source1(Vss)=0V

ltem	Symbol	Rating	Unit
Supply Voltage	V_{DD}	−0.3 ~ 12	V
V- Terminal Input Voltage	V-	V _{DD} -32 ~ V _{DD} +0.3	V
DS Terminal Input Voltage	V _{DS}	V _{SS} -0.3 ~ V _{DD} +0.3	V
C _{OUT} Terminal Output Voltage	V _{COUT}	V _{DD} -32 ~ V _{DD} +0.3	V
D _{OUT} Terminal Output Voltage	V _{DOUT}	V _{SS} -0.3 ~ V _{DD} +0.3	V
Operation Temperature	T _{OPR}	-40 ~ +85	°C
Storage Temperature	T _{STG}	−55 ~ +125	°C
Drain-Source Voltage	V _{DS}	20	V
Gate-Source Voltage	V _{GS}	±12	V

■ Electrical Characteristics

<u>★ Topr=25°C</u>

ltem	Symbol	Measure Condition	Min.	Тур.	Max.	Unit	*1
Operating Input Voltage	$V_{DD}1$	$V_{DD} - V_{SS}$	1.5	_	5.0	V	Α
Minimum Operating Voltage for 0V Charging	V _{ST}	$V_{DD} - V_{-}, V_{DD} - V_{SS} = 0V$	_	_	1.8	V	Α
Overcurrent Release Resistance	R _{SHORT}	$V_{DD}=3.6V, V=1.0V$	_	50	_	kΩ	F
C _{OUT} Pin Nch ON Voltage	V _{OL} 1	$I_{OL} = 50 \mu A, V_{DD} = 4.5 V$	_	0.4	0.5	٧	-
C _{OUT} Pin Pch ON Voltage	V _{OH} 1	I _{OH} =-50 \(\mu\)A, \(\nabla_{DD}=3.9\)V	3.4	3.7	_	٧	_
D _{out} Pin Nch ON Voltage	V _{oL} 2	I _{OL} =50 μA, V _{DD} =2.0V	_	0.2	0.5	٧	_
D _{out} Pin Pch ON Voltage	V _{OH} 2	$I_{OL} = -50 \mu A, V_{DD} = 3.9 V$	3.4	3.7	_	V	_
Current Consumption	I _{DD}	V _{DD} =3.9V, V-=0V	_	4.0	8.0	μA	L
Current Consumption at	Is	V _{DD} =2.0V	_	1.2	2.0	μА	L
Stand-By	IS	T _{OPR} = −5~55℃	-	-	4.0	μ. τ	L
	V _{DET} 1	R1=1.0kΩ	4.245	4.280	4.315	.,	
Overcharge Detection Voltage		T _{OPR} = -5~55℃	4.240	4.280	4.320	V	В
Overcharge Release Voltage	V _{REL} 1	R1=1.0kΩ	4.050	4.100	4.150	V	В
Overdischarge Detection Voltage	V _{DET} 2	V-=0V, R1=1.0kΩ	2.925	3.000	3.075	٧	D
Overdischarge Release Voltage	V _{REL} 2	R1=1.0kΩ	3.120	3.200	3.280	V	D

MP23SB

★ Tope = 25°C

						I OPK	
Item	Symbol	Measure Condition	Min.	Тур.	Max.	Unit	*1
Discharging Overcurrent Detection Voltage	V _{DET} 3	V _{DD} =3.1V, R2=2.2kΩ	0.080	0.100	0.120	V	F
Charging Overcurrent Detection Voltage	V _{DET} 4	V _{DD} =3.1V, R2=2.2kΩ	-0.130	-0.100	-0.070	V	G
Short Detection Voltage	V _{SHORT}	V _{DD} =3.1V	0.55	0.80	1.00	V	F
Overcharge Detection Delay Time	tV _{DET} 1	V _{DD} =3.6V→4.4V	0.70	1.00	1.30	S	В
Overcharge Release Delay Time	tV _{REL} 1	V _{DD} =4.4V→3.6V	11	16	21	ms	В
Overdischarge Detection Delay Time	tV _{DET} 2	V _{DD} =3.6V→2.2V	14	20	26	ms	D
Overdischarge Release Delay Time	tV _{REL} 2	V _{DD} =2.2V → 3.3V	0.7	1.2	1.7	ms	Ш
Discharging Overcurrent Detection Delay Time	tV _{DET} 3	V _{DD} =3.1V, V-=0V→0.5V	8	12	16	ms	F
Discharging Overcurrent Release Delay Time	tV _{REL} 3	V _{DD} =3.1V, V-=3V→0V	0.7	1.2	1.7	ms	F
Charging Overcurrent Detection Delay Time	tV _{DET} 4	V _{DD} =3.1V, V-=0V→-1V	5	8	11	ms	G
Charging Overcurrent Release Delay Time	tV _{REL} 4	V _{DD} =3.1V, V-=-1V→0V	0.7	1.2	1.7	ms	G
Short Detection Delay Time	t _{short}	V _{DD} =3.1V, V-=0V→3V	230	300	500	μs	F
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250 \(\mu \), \(\mathbb{V}_{GS} = 0 \mathbb{V} \)	20	-	_	V	
7 0 1 1/1 0 1 0 1	I _{DSS}	V _{DS} =16V, V _{GS} =0V	_	-	1		
Zero Gate Voltage Drain Current		Tյ=55℃	_	-	5	μA	
Gate-Body Leakage Current	I _{GSS}	V _{DS} =0V, V _{GS} =±12V	-	-	±10	μA	
Gate-Source Breakdown Voltage	BV _{GSO}	$V_{DS} = 0V, I_{G} = \pm 250 \mu A$	±12	-	-	V	
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250 \(\mu \)A	0.5	0.8	1.5	V	
		V _{GS} =10V, I _D =5A	_	38	44		
Obalia Oarman Oarman		T _J =125℃	_	56	66	mΩ	
Static Source-Source ON-Resistance	R _{ss(ON)}	V _{GS} =4.5V, I _D =5A	_	44	49	mΩ	
		V _{GS} =3.9V, I _D =5A	-	45	50	mΩ	
		V _{GS} =2.5V, I _D =3A	-	57	70		
Diode Forward Voltage	V _{SD}	I _S =1.7A, V _{GS} =0V	_	0.81	1.2	V	
Maximum Body-Diode Continuous Current	Is		_	-	1.7	Α	

Note: *1 The test circuit symbols.

*2 The parameter is guaranteed by design.

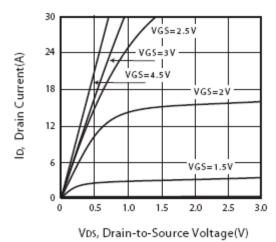


Figure 1. Output Characteristics

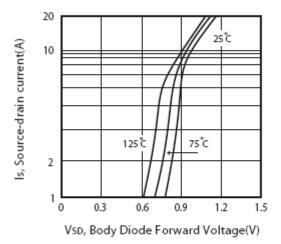
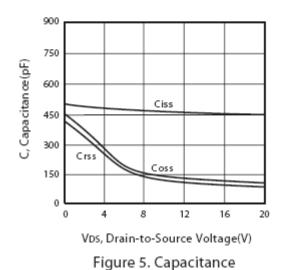



Figure 3. Body Diode Forward Voltage Variation with Source Current

15 12 9 -55°C 7j=125°C 0.0 0.4 0.8 1.2 1.6 2.0 2.4 VGS, Gate-to-Source Voltage(V)

Figure 2. Transfer Characteristics

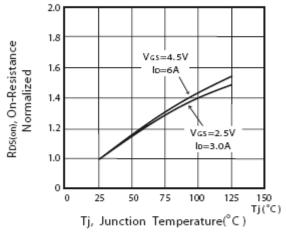
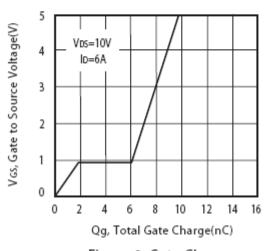
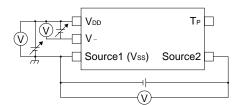
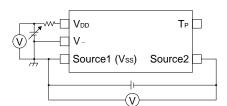
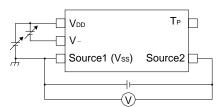


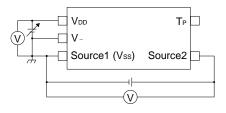
Figure 4. On-Resistance Variation with Drain Current and Temperature

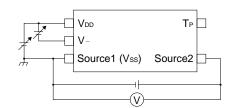



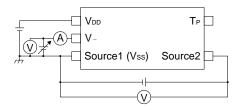

Figure 9. Gate Charge

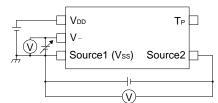
■ Measuring Circuit

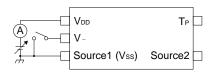

A.


В.


C.


D.


E.


F.

G.

Н.

Operation

1. Overcharge detector (VD1)

The VD1 monitors V_{DD} pin voltage during charge. In the state of charging the battery, it will detect the overcharge state of the battery if the V_{DD} terminal voltage becomes higher than the overcharge detection voltage(Typ. 4.280V). And then the C_{OUT} terminal turns to low level, so the internal charging control Nch MOSFET turns OFF and it forbids to charge the battery.

After detecting overcharge, it will release the overcharge state if the V_{DD} terminal voltage becomes lower than the overcharge release voltage(Typ.4.100V). And then the C_{OUT} terminal turns to high level, so the internal charging control Nch MOSFET turns ON, and it accepts to charge the battery.

When the V_{DD} terminal voltage is higher than the overcharge detection voltage, to disconnect the charger and connect the load, leave the C_{OUT} terminal low level, but it accepts to conduct load current via the paracitical body diode of the internal Nch MOSFET. And then if the V_{DD} terminal voltage becomes lower than the overcharge detection voltage, the C_{OUT} terminal turns to high level, so the internal Nch MOSFET turn ON, and it accepts to charge the battery.

The overcharge detection and release have delay time decided internally. When the V_{DD} terminal voltage becomes higher than the overcharge detection voltage, if the V_{DD} terminal voltage becomes lower than the overcharge detection voltage again within the overcharge detection delay time(Typ. 1.00s), it will not detect overcharge. And in the state of overcharge, when the V_{DD} terminal voltage becomes lower than the overcharge release voltage, if the V_{DD} terminal voltage backs higher than the overcharge release voltage again within the overcharge release delay time(Typ. 16ms), it will not release overcharge.

The output driver stage of the C_{OUT} terminal includes a level shifter, so it will output the V_{-} terminal voltage as low level. The output type of the C_{OUT} terminal is CMOS output between V_{DD} and V_{-} terminal voltage.

2. Overdischarge detector (VD2)

The VD2 monitors V_{DD} pin voltage during discharge. In the state of discharging the battery, it will detect the overdischarge state of the battery if the V_{DD} terminal becomes lower than the overdischarge detection voltage (Typ. 3.000V). And then the D_{OUT} terminal turns to low level, so the internal discharging control Nch MOSFET turn OFF and it forbids to discharge the battery.

Once overdischarge has been detected, overdischarge is released and the DOUT output becomes high level, if the voltage of the battery rises more than the overdischarge detection voltage with connecting the charger, or more than the overdischarge release voltage without connecting the charger. Charging current is supplied through a parasitic diode of Nch MOS FET when the VDD terminal voltage is below the overdischarge detection voltage to the connection of the charger, and the DOUT terminal enters the state which can be discharged by becoming high level, and turning on Nch MOS FET when the VDD terminal voltage rises more than the overdischarge detection voltage.

When the battery voltage is about 0V, if the charger voltage is higher than the minimum operating voltage for 0V charging (Max. 1.8V), the C_{out} terminal outputs high level and it accepts to conduct charging current.

The overdischarge detection have delay time decided internally. When the V_{DD} terminal voltage becomes lower than the overdischarge detection voltage, if the V_{DD} terminal voltage becomes higher than the overdischarge detection voltage again within the overdischarge detection delay time (Typ. 20ms), it will not detect overdischarge. Moreover, the overdischarge release delay time (Typ. 1.2ms) exists, too.

All the circuits are stopped, and after the overdischarge is detected, it is assumed the state of the standby, and decreases the current (standby current) which IC consumes as much as possible. (When $V_{DD}=2V$, Max. 2.0uA).

The output type of the Dout terminal is CMOS output between VDD and VSS terminal voltage.

3. Discharge overcurrent detector, Short detector (VD3, Short Detector)

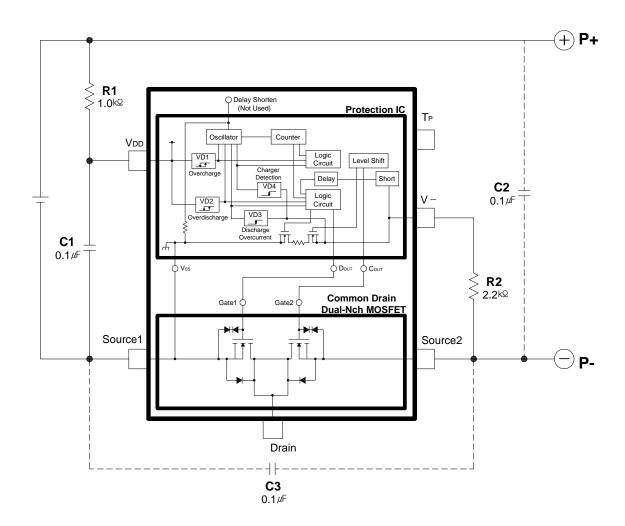
In the state of chargable and dischargabe, VD3 monitors the voltage level of V_- pin. If the V_- terminal voltage becomes higher than the discharging overcurrent detection voltage (Typ. 0.100V) by short of loads, etc., it will detect discharging overcurrent state. If the V_- terminal voltage becomes higher then short detection voltage (Typ. 0.80V), it will detect discharging overcurrent state, too. And then the D_{OUT} terminal outputs low level, so the internal discharging control Nch MOSFET turns OFF, and it protects from large current discharging.

The discharging overcurrent detection has delay time decided internally. When the V_- terminal voltage becomes higher than the discharging overcurrent detection voltage, if the V_- terminal voltage becomes lower than the discharging overcurrent detection voltage within the discharging overcurrent detection delay time (Typ. 12ms), it will not detect discharging overcurrent. Morever, the discharging overcurrent release delay time (Typ. 1.2ms) exists, too.

The short detection delay time (Typ. 300us) decided internally exists, too.

The discharging overcurrent release resistance (Typ. 50kohm) is built into between V_{-} terminal and V_{ss} terminal. In the state of discharging overcurrent or short, if the load is opened, V_{-} terminal is pulled down to the V_{ss} via the discharging overcurrent release resistance. And when the V_{-} terminal voltage becomes lower than the discharging overcurrent detection voltage, it will automatically release discahrging overcurrent or short state. If discharging overcurrent or short is detected, the discharging overcurrent release resistance turns ON. On the normal state (chargable and dischargable state), the discharging overcurrent release resistance is OFF.

4. Charge overcurrent detector (VD4)

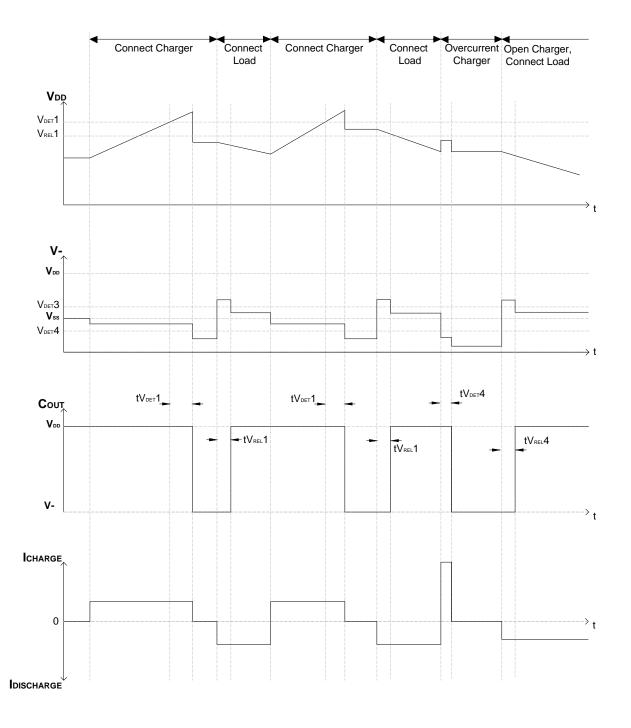

In the state of chargable and dischargable, VD4 monitors the voltage level of V_- pin. If the V_- terminal voltage becomes lower than charging overcurrent detection voltage (Typ. -0.100V) by abnormal voltage or current charger, etc., it will detect charging overcurrent state. And then the C_{OUT} terminal outputs low level, so the internal charging control Nch MOSFET turn OFF, and it protects from large current charging.

It release charging overcurrent state if the abnormal charger is disconnected and the load is connected.

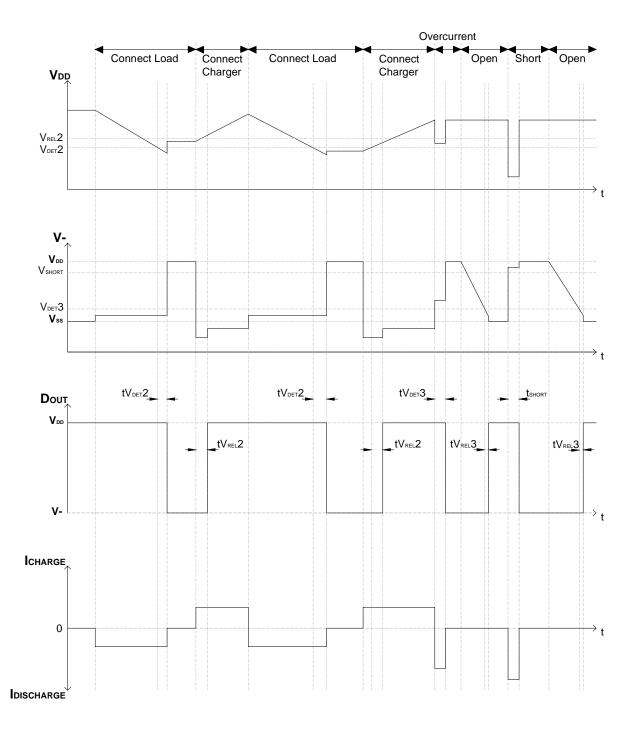
The charging overcurrent detection has delay time decided internally. When the V-terminal voltage becomes lower than the charging overcurrent detection voltage, if the V-terminal voltage becomes higher than the charging overcurrent detection voltage within the charging overcurrent detection delay time (Typ. 8ms), it will not detect charging overcurrent. Morever, the charging overcurrent release delay time (Typ. 1.2ms) exists, too.

■ Application Circuit (Example)

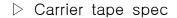
***** Application Hint

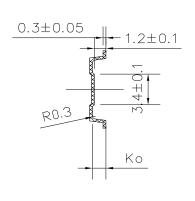

R1 and C1 stabilize a supply voltage ripple. However, the detection voltage rises by the current of penetration in IC of the voltage detection when R1 is enlarged, so the value of R1 is adjusted to 1kohm or less. Moreover, adjust the value of C1 to 0.1uF or more to do the stability operation, please.

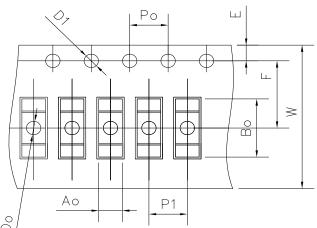
R1 and R2 resistors are current limit resistance if a charger is connected reversibly or a highvoltage charger that exceeds the absolute maximum rating is connected. R1 and R2 may cause a power consumption will be over rating of power dissipation, therefore the `R1+R2` should be more than 1kohm. Moreover, if R2 is too enlarged, the charger connection release cannot be occasionally done after the overdischarge is detected, so adjust the value of R2 to 10kohm or less, please.

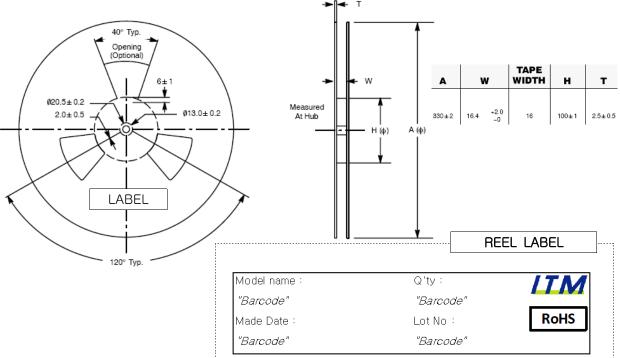

C2 and C3 capacitors have effect that the system stability about voltage ripple or imported noise. After check characteristics, decide that these capacitors should be inserted or not, where should be inserted, and capacitance value, please.

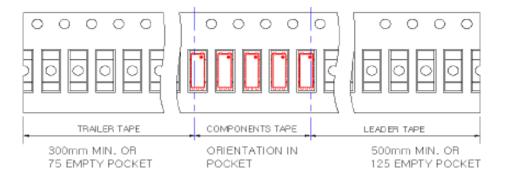
■ Timing Chart


1. Overcharge, Charging overcurrent operations




2. Overdischarge, Discharging Overcurrent and Short operations

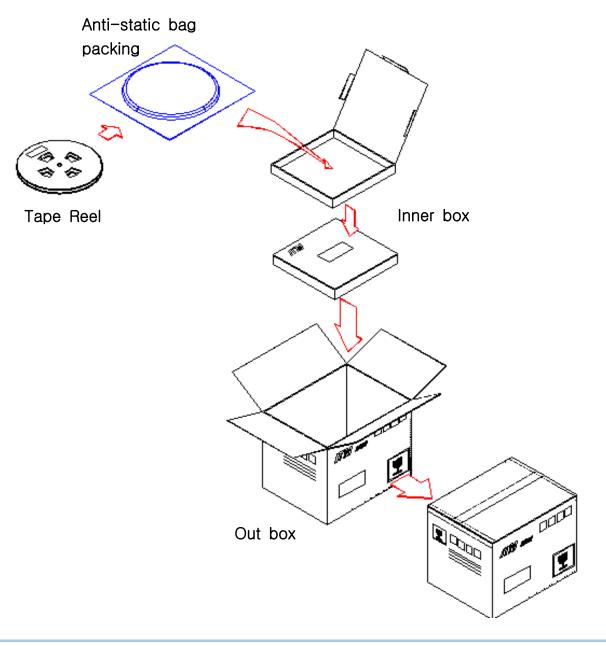

■ Packing spec



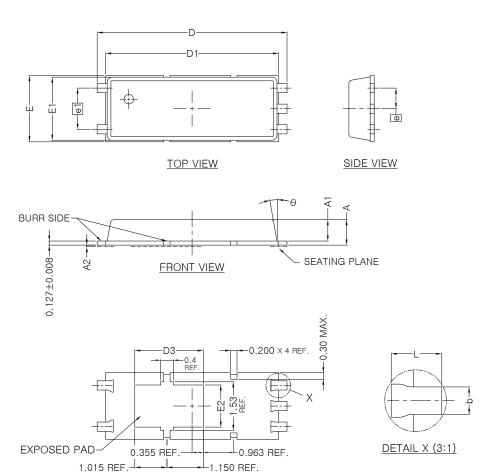
Ao=2.45±0.1 Bo=6.5±0.1 p1=4±0.1 E=1.75±0.1 F=7.5±0.1 W=16±0.3 Po=4±0.1 Do=Ø1.5-0 Ko=1.4±0.1

> Taping spec

Rev.00 [2009. 10. 19]



MP23SB


DOUTER BOX PACKING SPECIFICATION

■ Package Description

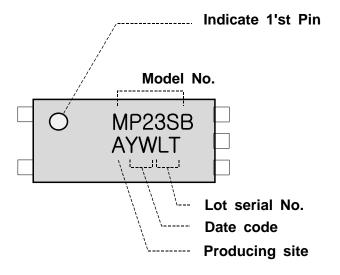
BTM VIEW

SYMBOL	DIMENSIONS				
STMBOL	MIN.	NOM.	MAX.	NOTE	
А	0.750	0.800	0.850		
A1	0.623	0.673	0.723		
A2	_	_	0.050		
D	5.900	6.000	6.100		
D1	5.320	5.370	5.420		
D3		2.220 REF.			
E	2.000	2.100	2.200		
E1	1.950	2.000	2.050		
E2		1.330 REF.			
Ө	_	_	10 °		
е					
e1	1.300 BSC				
L	0.350	_	_		
b	0.255	0.300	0.390		

<u>NOTE</u>

- 1. LEAD BURR : VERTICAL MAX 0.025
- 1. LEAD BURH: VERTICAL MAX 0.025
 HORIZONTAL MAX 0.025
 BURR SIDE: ALL TOP SIDE

 2. MOLD BURR & FLASH: PACKAGE OUT LINE BURR MAX 0.100
 EXPOSED PAD FLASH MAX 0.200


 3. PACKAGE WARPAGE MAX 0.025
 4. LEAD AND EXPOSED PAD PLATING: PURE TIN

THICKNESS> 7.62~25.4um

MP23SB

■ Marking Contents

