
Document No. : 031-MP26A-06

Product	Battery Protect Solution IC	
Product code	MP26A (001-MP26A-00)	
Production Form	TEP - 5L,BD54	
Date of Registration	July. 3. 2006	

	Issued	Checked	Checked	Approved
결 재	An	Alpha .	25	Hhm
	H.M Jo	S.W Park	S.H Ahn	Ŷ.S Kim

	HE	711 571 755	卫型计会员	
협	One	AL	\times	
의	8/33	(作:11)	CSA	
-	1/20	1/27	11-n	

Room 2504 International Science & Technology Building, Shen Nan Middle Road,Futian,ShenZhen TEL:+86-0755-83957788 / +86-0755-82566617 FAX:+86-0755-23919567 E-mail:li@itm-cn.com

Contents

1. Features	Page 1
2. Outline	Page 2
3. Pin Assignment	Page 3
4. Block Diagram	Page 3
5. Absolute Maximum Rating	Page 4
6. Electrical Characteristics	Page 4
7. Measuring Circuit	Page 9
8. Operation	Page 10
1) Overcharge detector (VD1)	Page 10
2) Overdischarge detector (VD2)	Page 10
3) Discharge overcurrent detector, Short detector (VD3, Short Detector)	Page 11
4) Charger detector	Page 11
9. Application Circuit	Page 12
10. Timing Chart	Page 13
11. Packing Spec	Page 15
12. Package Description	Page 17
13. Marking Contents	Page 18

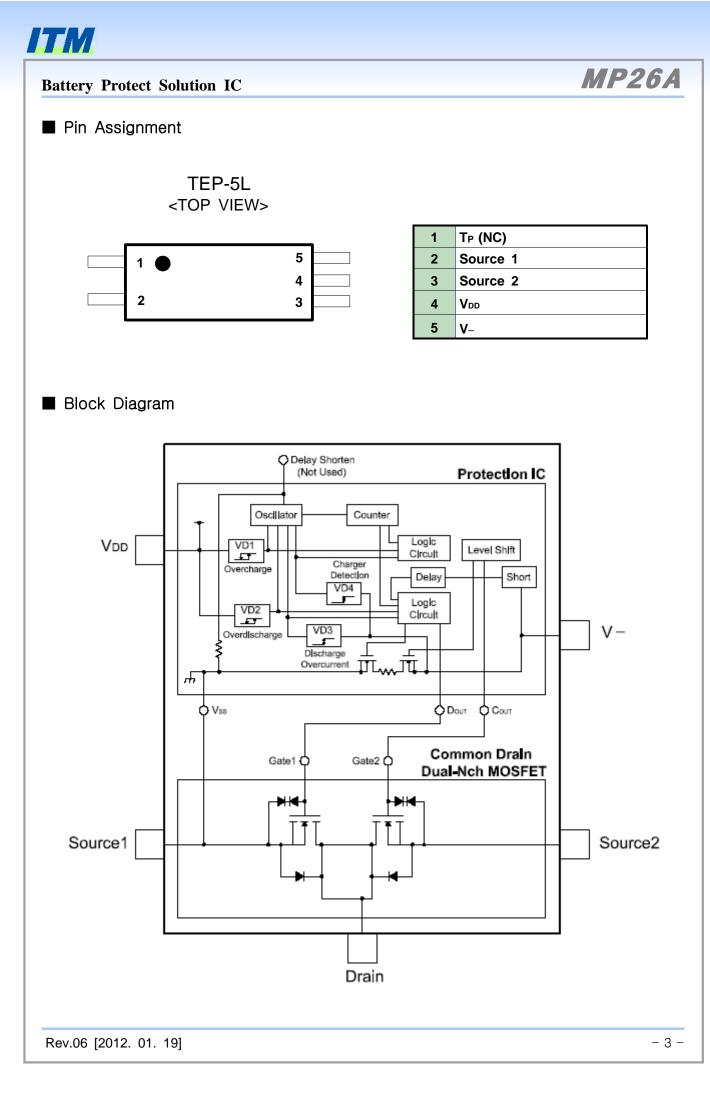
Battery Protect Solution IC

Features

1. The protection IC and The Dual-Nch MOSFET to use common Drain are integrated into
One-packaging IC.
2. Reduced Pin-Count by fully connecting internally.
3. Application Part
1) Protection IC
① Uses high withstand voltage CMOS process.
- The charger section can be connected up to absolute maximum rating 28V.
② Detection voltage precision
- Overcharge detection voltage
±25mV (Ta=25℃), ±45mV (Ta=-30~70℃)
- Overdischarge detection voltage
±35mV (Ta=25℃), ±75mV (Ta=-30~70℃)
- Discharge overcurrent detection voltage
±10mV (Ta=25℃), ±20mV (Ta=-30~70℃)
③ Built-in detection delay times (timer circuit)
- Overcharge detection delay time
±0.2s(Ta=25℃), +0.5s,-0.4.s (Ta=-30~70℃)
- Overdischarge detection delay time
±19.2ms (Ta=25℃), +38.4ms,-48ms (Ta=-30~70℃)
- Discharge overcurrent detection delay time
±2.4ms (Ta=25℃), +6ms,-4.8ms (Ta=-30~70℃)
- Short detection delay time
+160µs, -120µs (Ta=25°C), +400µs, - 200µs (Ta=-30~70°C)
④ With abnormal charger detection function
5 0V charge function is allowed
6 Auto Wake-up function is allowed
4. Common Drain Dual-Nch MOSFET
(1) Using advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and
operation with gate voltage as low as 2.5V while retaining a 12V $V_{GS(MAX)}$.
② ESD protected
③ Common drain configuration
General characteristics
$- V_{DS} (V) = 24V$
-1 (A) -7 OA

- I_{D} (A) = 7.0A
- $R_{\scriptscriptstyle SS(ON)}$ < $47m\Omega$ (V $_{\scriptscriptstyle GS}$ = 3.9V , $I_{\scriptscriptstyle D}$ = 5A)
- ESD Rating : 2000V HBM

Outline


ГТМ

This is a battery protect solution IC which is integrated with built-in the protection IC to use a lithium ion/lithium polymer secondary batteries developed for 1-cell series and Dual-Nch MOSFET. It functions to protect the battery by detecting overcharge, overdischarge, discharge overcurrent, charge overcurrent and other abnormalities as turning off internal Nch MOSFET. The protection IC is composed of four voltage detectors, short detection circuit, reference voltage sources, oscillator, counter circuit and logical circuits.

The C_{out} pin (charge FET control pin) and D_{out} pin (discharge FET control pin) outputs are CMOS output, and can drive the internal Nch MOSFET directly. The C_{out} output becomes low level after delay time fixed in the IC if overcharge is detected. The D_{out} output becomes low level after delay time fixed in the IC if overdischarge, discharge overcurrent or short is detected.

On overcharge state, if the V_{DD} voltage is less than the overcharge release voltage, the C_{OUT} output becomes high level after delay time fixed in the IC. On overdischarge state, if the voltage of the battery rises more than the overdischarge detection voltage with connecting the charger, the D_{OUT} output becomes high level after delay time fixed in the IC. Charging current can be supplied to the battery discharged up to 0V.

Once discharge overcurrent or short have been detected, if the state of discharge overcurrent or short is released by opening the loads, the D_{out} output becomes high level after delay time fixed in the IC. On overdischarge state, the supply current is reduced as less as possible. Once charge overcurrent has been detected, the state of charge overcurrent is released by opening the charger and setting the load.

Absolute Maximum Rating

※ <u>T_{OPR}=25℃, Source1(V_{ss})=0V</u>

MP26A

Item	Symbol	Rating	Unit
Supply Voltage	V _{dd}	-0.3 ~ 12	V
V- Terminal Input Voltage	V-	$V_{DD} - 28 \sim V_{DD} + 0.3$	V
C _{out} Terminal Output Voltage	V _{COUT}	$V_{DD} - 28 \sim V_{DD} + 0.3$	V
D _{our} Terminal Output Voltage	V _{DOUT}	V_{ss} -0.3 ~ V_{DD} +0.3	V
Operation Temperature	T _{opr}	-40 ~ +85	°C
Storage Temperature	T _{stg}	-55 ~ +125	C
Drain-Source Voltage	V _{DS}	24	V
Gate-Source Voltage	V_{GS}	±12	V

Electrical Characteristics

						1	
Item	Symbol	Measure Condition	Min.	Тур.	Max.	Unit	*1
Operating Input Voltage	V _{DD} 1	V_{DD} – V_{SS}	1.5	-	10.0	V	А
Minimum Operating Voltage for 0V Charging	V_{ST}	V_{DD} – V-, V_{DD} -V _{SS} =0V	_	_	1.2	V	А
Current Consumption	IDD	V_{DD} = 3.9V, V- = 0V	_	3.0	6.0	μA	Н
Current Consumption at Stand-By	Is	$V_{DD} = 2.0V$	_	0.2	0.5	μA	Η
Overcharge Detection Voltage	$V_{\text{DET}}1$	R1 = 1kΩ	4.250	4.275	4.300	V	В
Overcharge Release Voltage	V_{REL} 1	R1 = 1kΩ	4.045	4.075	4.105	V	В
Overdischarge Detection Voltage	V _{DET} 2	V- = 0V R1 = 1kΩ	2.365	2.400	2.435	V	D
Overdischarge Release Voltage	$V_{\text{REL}}2$	R1 = 1kΩ	2.830	2.900	2.970	V	D
Overdischarge Release Voltage 2	$V_{REL}2'$	$R1 = 1 k\Omega, R2 = 2.2 k\Omega$ $V_{Charger} = 4.2 V$	2.375	2.430	2.485	V	D
Discharging Overcurrent Detection Voltage	V _{det} 3	$V_{DD} = 3V$ $R2 = 2.2k\Omega$	0.140	0.150	0.160	V	F
Charger Detection Voltage	$V_{CH}4$		-2.0	-1.3	-0.6	V	G
Short Detection Voltage	V _{SHORT}	$V_{DD} = 3.0V$	0.8	0.9	1.0	V	F

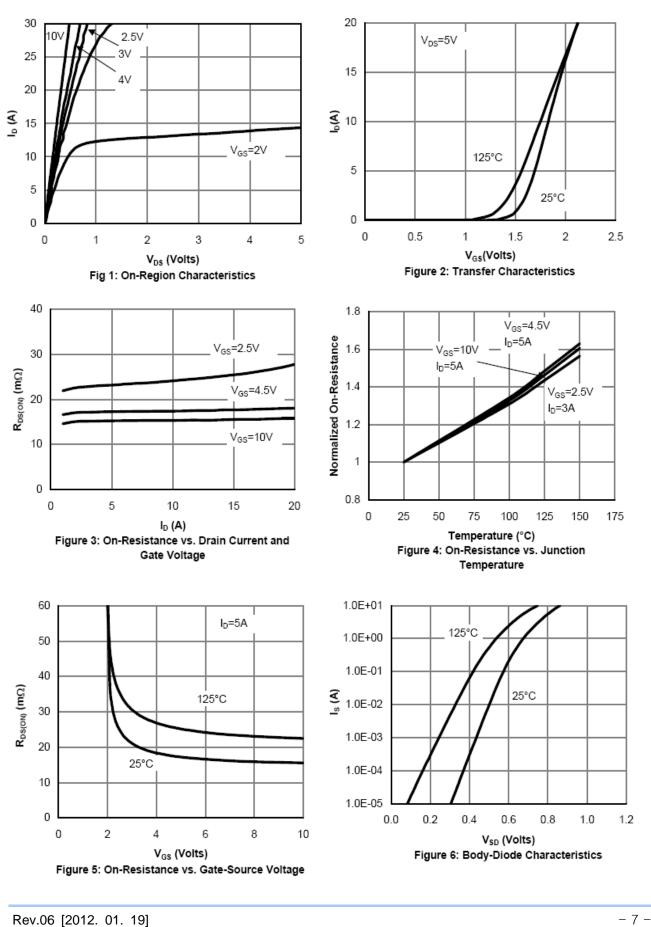
₩ <u>T_{opr}=25°</u>C

MP26A

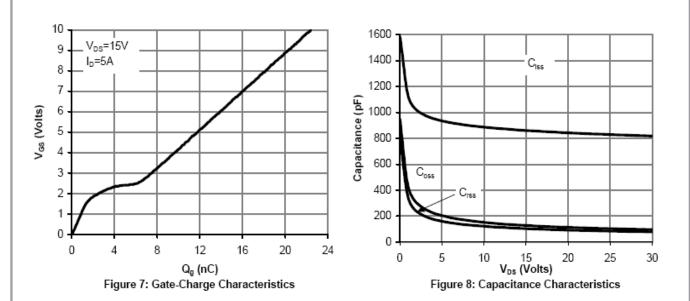
*	=25 ℃

							= <u>2</u> 5 C
Item	Symbol	Measure Condition	Min.	Тур.	Max.	Unit	*1
Overcharge Detection Delay Time	$tV_{\text{DET}}1$	V_{DD} = 3.6V \rightarrow 4.4V	0.80	1.00	1.20	S	В
Overcharge Release Delay time	tV _{REL} 1	V_{DD} = 4.4V \rightarrow 3.6V	1.6	2.0	2.4	ms	В
Overdischarge Detection Delay Time	tV _{DET} 2	$V_{\text{DD}} = 3.6V \rightarrow 2.2V$	76.8	96.0	115.2	ms	D
Overdischarge Release Delay time	tV _{REL} 2	$V_{DD} = 2.7V,$ $V- = 3V \rightarrow 0V$	3.2	4.0	4.8	ms	D
Discharging Overcurrent Detection Delay Time	tV _{DET} 3	$V_{DD} = 3V,$ $V- = 0V \rightarrow 1V$	9.6	12.0	14.4	ms	F
Discharging Overcurrent Release Delay Time	tV _{REL} 3	V _{DD} =3.5V, V-=3V→0V	3.2	4.0	4.8	ms	F
Short Detection Delay Time	t _{short}	$V_{DD} = 3V,$ $V- = 0V \rightarrow 3V$	280	400	560	μs	F
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250 <i>μ</i> A, V _{GS} =0V	24	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =24V, V _{GS} =0V TJ=55℃	_	-	1 5	μA	
Gate-Body Leakage Current	I _{GSS}	$V_{\text{DS}}=0V$, $V_{\text{GS}}=\pm10V$	-	-	10	μA	
Gate-Source Breakdown Voltage	BV_{GSO}	$V_{\text{DS}}=0V$, $I_{\text{G}}=\pm250\mu\text{A}$	±12	_	-	V	
Gate Threshold Voltage	$V_{\text{GS(th)}}$	$V_{DS}=V_{GS}$, $I_D=250\mu$ A	0.6	1.0	1.5	V	
		V _{GS} =10V, I _D =5A TJ=125℃	_	34 52	40 62	mΩ	
Static Source-Source	R _{SS(ON)}	V_{GS} =4.5V, I_D =5A	-	40	46	mΩ	
ON-Resistance		V_{GS} =3.9V, I_D =5A	-	41	47	mΩ	
		V_{GS} =2.5V, I_D =3A	-	52	66	mΩ	
Diode Forward Voltage	V_{SD}	$I_s=1A$, $V_{gs}=0V$	0.50	0.76	0.90	V	
Maximum Body-Diode Continuous Current	ls		_	-	4.5	A	

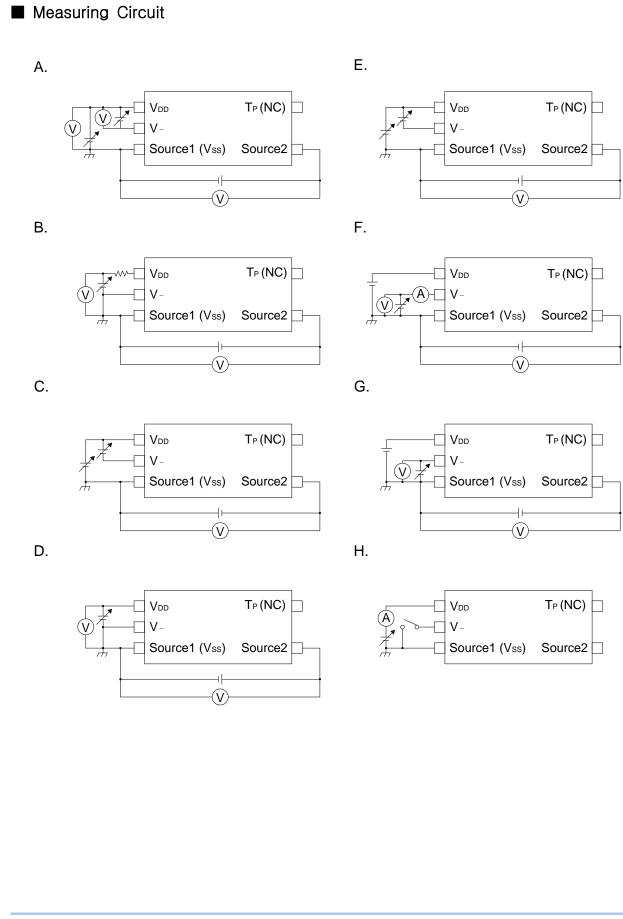
Note : *1 The test circuit symbols.


MP26A

				*	T _{opr} =-30	~70℃	*2
Item	Symbol	Measure Condition	Min.	Typ.	Max.	Unit	*1
Overcharge Detection Voltage	V _{det} 1	$R1 = 1k\Omega$	4.230	4.275	4.320	V	В
Overcharge Release Voltage	V_{REL} 1	$R1 = 1k\Omega$	4.005	4.075	4.145	V	В
Overdischarge Detection Voltage	V _{det} 2	$R1 = 1k\Omega$	2.325	2.400	2.475	V	D
Overdischarge Release Voltage	$V_{\text{REL}}2$	$R1 = 1k\Omega$	2.810	2.900	2.990	V	D
Overdischarge Release Voltage 2	$V_{\text{REL}}2^{\prime}$	V _{CHG} =4.2V, R1=1kQ, R2=2.2kQ	2.330	2.430	2.530	V	D
Discharging Overcurrent Detection Voltage	V _{DET} 3	$R2 = 2.2k\Omega$	0.130	0.150	0.170	V	F
Charger Detection Voltage	V _{CH} 4		-2.0	-1.3	-0.6	V	G
Short Detection Voltage	V _{SHORT}	$V_{DD} = 3.0V$	0.7	0.9	1.1	V	F
Charger Detection Voltage	V _{CH}	_	-2.0	-1.3	-0.6	V	G
Overcharge Detection Delay Time	$tV_{\text{DET}}1$	V_{DD} = 3.6V \rightarrow 4.4V	0.60	1.00	1.50	S	В
Overcharge Release Delay time	tV_{REL} 1	V_{DD} = 4.4V \rightarrow 3.6V	1.2	2.0	3.0	ms	В
Overdischarge Detection Delay Time	tV _{DET} 2	$V_{\text{DD}} = 3.6 \text{V} \rightarrow 2.2 \text{V}$	57.6	96.0	144.0	ms	D
Overdischarge Release Delay time	tV _{REL} 2	$V_{DD} = 2.7V,$ $V- = 3V \rightarrow 0V$	2.4	4.0	6.0	ms	D
Discharging Overcurrent Detection Delay Time	tV _{DET} 3	$V_{DD} = 3V,$ $V- = 0V \rightarrow 1V$	7.2	12.0	18.0	ms	F
Discharging Overcurrent Release Delay Time	tV _{REL} 3	V _{DD} =3.5V, V-=3V→0V	2.4	4.0	6.0	ms	F
Short Detection Delay Time	t _{short}	$V_{DD} = 3V,$ $V- = 0V \rightarrow 3V$	200	400	800	μs	F


Note : *1 The test circuit symbols.

 $\star 2$ The all parameters on this page is guaranteed by design.



Battery Protect Solution IC

Operation

ITM

1. Overcharge detector (VD1)

The VD1 monitors V_{DD} pin voltage during charge. In the state of charging the battery, it will detect the overcharge state of the battery if the V_{DD} terminal voltage becomes higher than the overcharge detection voltage(Typ. 4.275V). And then the C_{OUT} terminal turns to low level, so the internal charging control Nch MOSFET turns OFF and it forbids to charge the battery.

After detecting overcharge, it will release the overcharge state if the V_{DD} terminal voltage becomes lower than the overcharge release voltage(Typ.4.075V). And then the C_{OUT} terminal turns to high level, so the internal charging control Nch MOSFET turns ON, and it accepts to charge the battery.

When the V_{DD} terminal voltage is higher than the overcharge detection voltage, to disconnect the charger and connect the load, leave the C_{OUT} terminal low level, but it accepts to conduct load current via the paracitical body diode of the internal Nch MOSFET. And then if the V_{DD} terminal voltage becomes lower than the overcharge detection voltage, the C_{OUT} terminal turns to high level, so the internal Nch MOSFET turn ON, and it accepts to charge the battery.

The overcharge detection and release have delay time decided internally. When the V_{DD} terminal voltage becomes higher than the overcharge detection voltage, if the V_{DD} terminal voltage becomes lower than the overcharge detection voltage again within the overcharge detection delay time(Typ. 1.00s), it will not detect overcharge. And in the state of overcharge, when the V_{DD} terminal voltage becomes lower than the overcharge release voltage, if the V_{DD} terminal voltage becomes lower than the overcharge release voltage, if the V_{DD} terminal voltage becomes lower than the overcharge release voltage again within the overcharge release delay time(Typ. 2ms), it will not release overcharge.

The output driver stage of the C_{out} terminal includes a level shifter, so it will output the V₋ terminal voltage as low level. The output type of the C_{out} terminal is CMOS output between V_{DD} and V₋ terminal voltage.

2. Overdischarge detector (VD2)

The VD2 monitors V_{DD} pin voltage during discharge. In the state of discharging the battery, it will detect the overdischarge state of the battery if the V_{DD} terminal becomes lower than the overdischarge detection voltage (Typ. 2.900V). And then the D_{OUT} terminal turns to low level, so the internal discharging control Nch MOSFET turn OFF and it forbids to discharge the battery.

Once overdischarge has been detected, overdischarge is released and the DOUT output becomes high level, if the voltage of the battery rises more than the overdischarge detection voltage with connecting the charger, or more than the overdischarge release voltage without connecting the charger. Charging current is supplied through a parasitic diode of Nch MOS FET when the VDD terminal voltage is below the overdischarge detection voltage to the connection of the charger, and the DOUT terminal enters the state which can be discharged by becoming high level, and turning on Nch MOS FET when the VDD terminal voltage rises more than the overdischarge detection voltage.

When the battery voltage is about 0V, if the charger voltage is higher than the minimum operating voltage for 0V charging (Max. 1.2V), the C_{out} terminal outputs high level and it accepts to conduct charging current.

The overdischarge detection have delay time decided internally. When the V_{DD} terminal voltage becomes lower than the overdischarge detection voltage, if the V_{DD} terminal voltage becomes higher than the overdischarge detection voltage again within the overdischarge detection delay time (Typ. 96ms), it will not detect overdischarge. Moreover, the overdischarge release delay time (Typ. 4ms) exists, too.

All the circuits are stopped, and after the overdischarge is detected, it is assumed the state of the standby, and decreases the current (standby current) which IC consumes as much as possible. (When $V_{DD}=2V$, Max. 0.5uA).

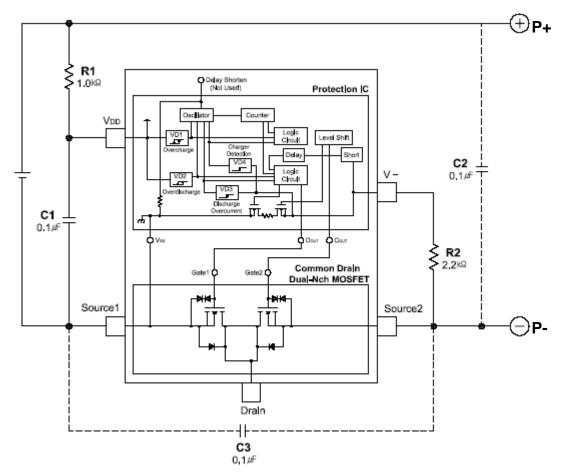
The output type of the D_{OUT} terminal is CMOS output between V_{DD} and V_{SS} terminal voltage.

3. Discharge overcurrent detector, Short detector (VD3, Short Detector)

In the state of chargable and dischargabe, VD3 monitors the voltage level of V₋ pin. If the V₋ terminal voltage becomes higher than the discharging overcurrent detection voltage (Typ. 0.150V) by short of loads, etc., it will detect discharging overcurrent state. If the V₋ terminal voltage becomes higher then short detection voltage (Typ. 0.9V), it will detect discharging overcurrent state, too. And then the D_{our} terminal outputs low level, so the internal discharging control Nch MOSFET turns OFF, and it protects from large current discharging.

The discharging overcurrent detection has delay time decided internally. When the V₋ terminal voltage becomes higher than the discharging overcurrent detection voltage, if the V₋ terminal voltage becomes lower than the discharging overcurrent detection voltage within the discharging overcurrent detection voltage within the discharging overcurrent detect discharging overcurrent. Morever, the discharging overcurrent release delay time (Typ. 4ms) exists, too.

The short detection delay time (Typ. 400us) decided internally exists, too.


The discharging overcurrent release resistance is built into between V₋ terminal and V_{ss} terminal. In the state of discharging overcurrent or short, if the load is opened, V₋ terminal is pulled down to the V_{ss} via the discharging overcurrent release resistance. And when the V₋ terminal voltage becomes lower than the discharging overcurrent detection voltage, it will automatically release discahrging overcurrent or short state. if discharging overcurrent or short is detected, the discharging overcurrent release resistance turns ON. On the normal state (chargable and dischargable state), the discharging overcurrent release resistance is OFF.

4. Charger detector (VD4)

VD4 monitors V- terminal voltage, when D_{out} output becomes high level, and V- terminal voltage is coming down to a level lower than the charger detection voltage. If excess current can flow, then the V- terminal voltage drops below the charger detection voltage. This prevents current flow into the circuit by turning OFF the internal Nch MOSFET with the C_{out} terminal being at low level. Charger detection releases when V- terminal is coming up to a high level than the charger detection voltage.

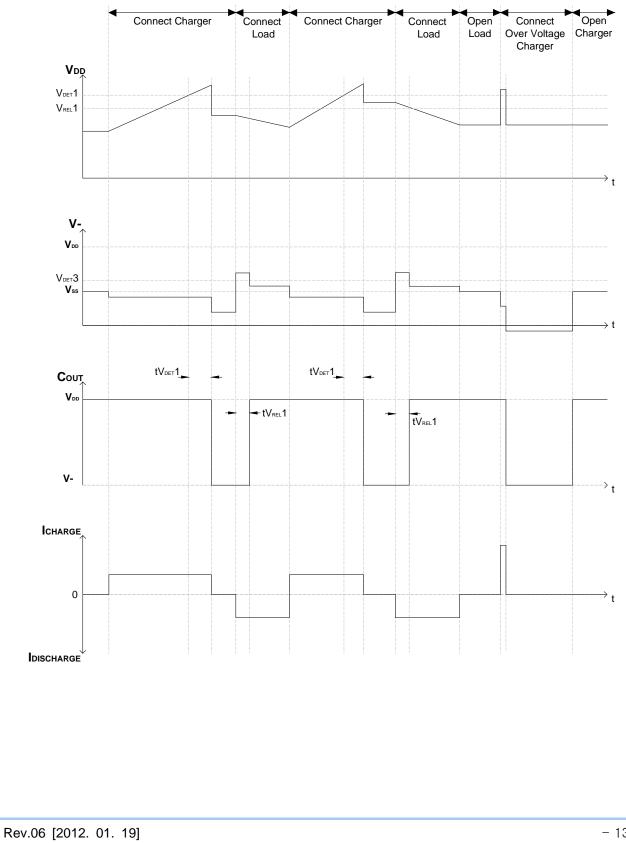
Battery Protect Solution IC

Application Circuit (Example)

***** Application Hint

R1 and C1 stabilize a supply voltage ripple. However, the detection voltage rises by the current of penetration in IC of the voltage detection when R1 is enlarged, so the value of R1 is adjusted to 1kohm or less. Moreover, adjust the value of C1 to 0.01uF or more to do the stability operation, please.

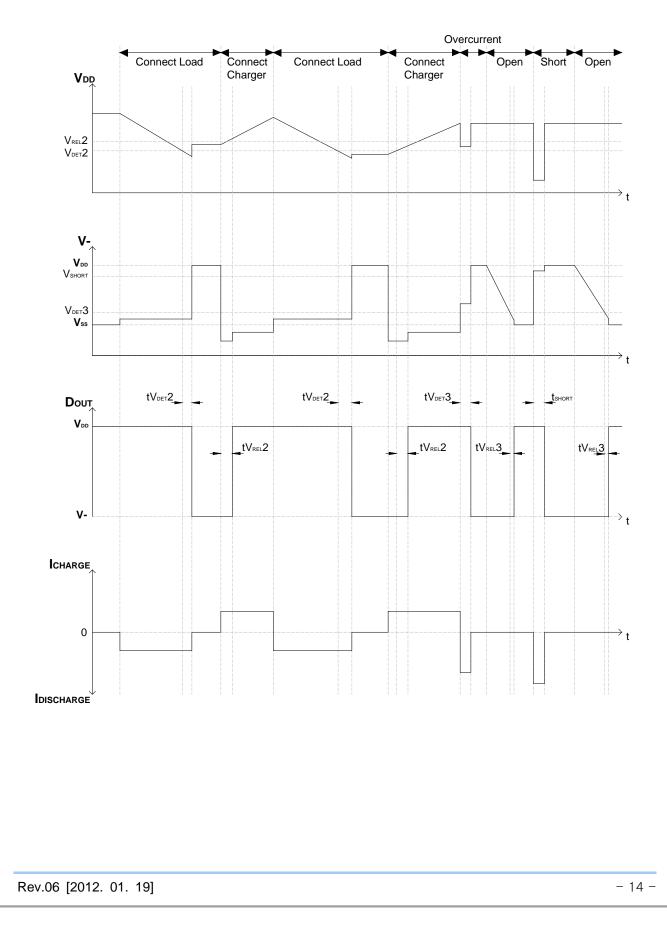
R1 and R2 resistors are current limit resistance if a charger is connected reversibly or a highvoltage charger that exceeds the absolute maximum rating is connected. R1 and R2 may cause a power consumption will be over rating of power dissipation, therefore the `R1+R2` should be more than 1kohm. Moreover, if R2 is too enlarged, the charger connection release cannot be occasionally done after the overdischarge is detected, so adjust the value of R2 to 10kohm or less, please.

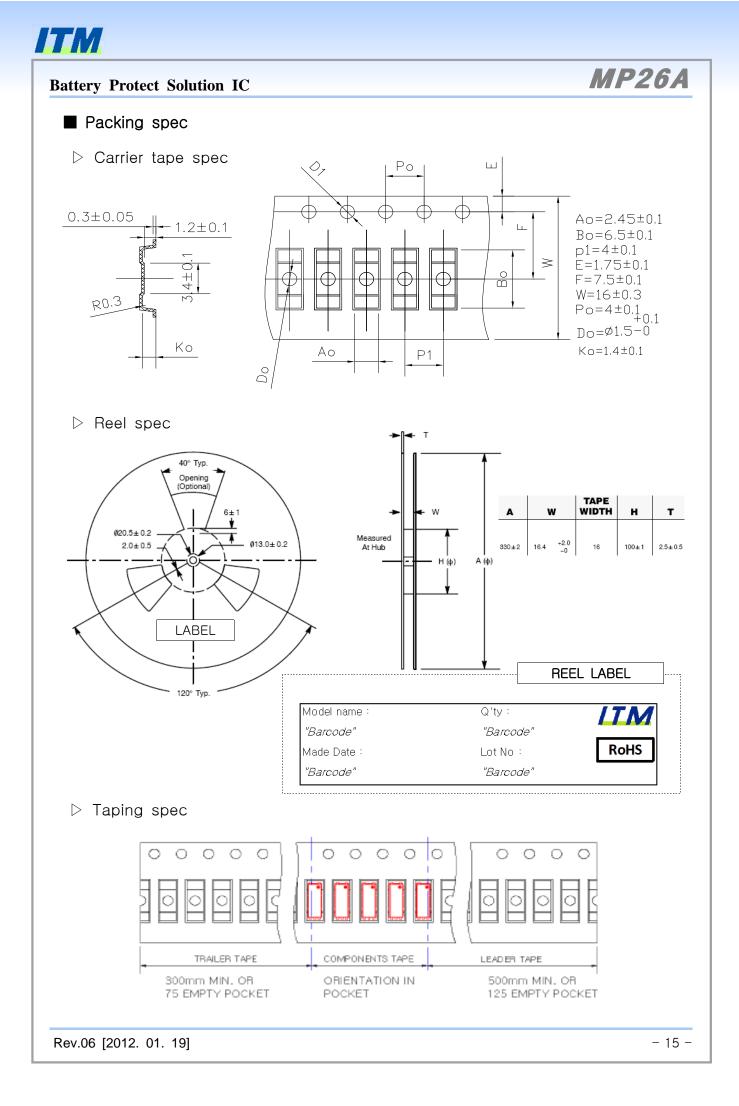

C2 and C3 capacitors have effect that the system stability about voltage ripple or imported noise. After check characteristics, decide that these capacitors should be inserted or not, where should be inserted, and capacitance value, please.

Battery Protect Solution IC

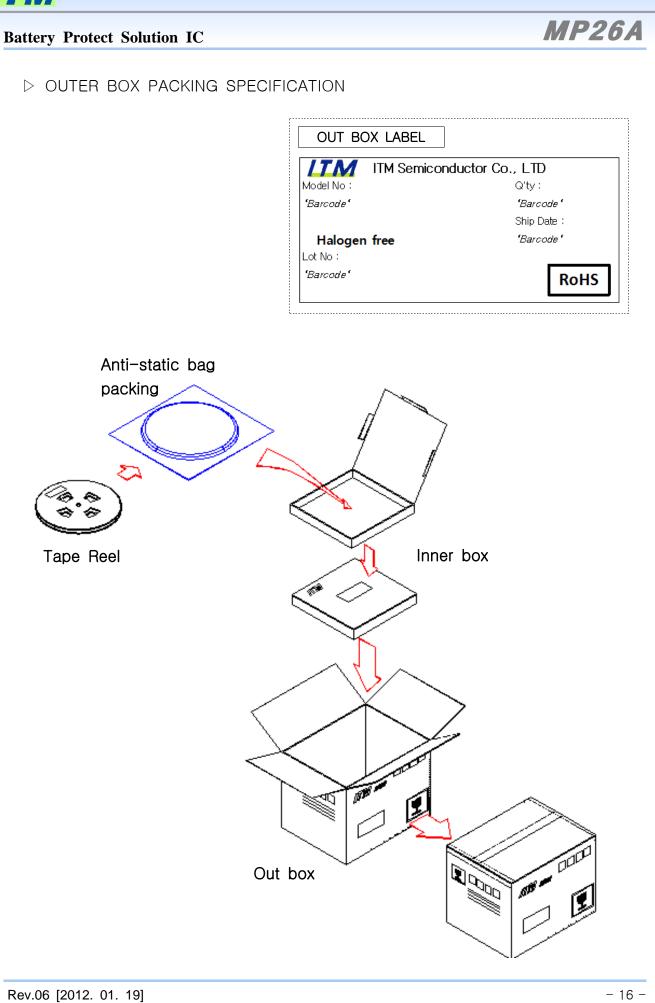
MP26A

■ Timing Chart

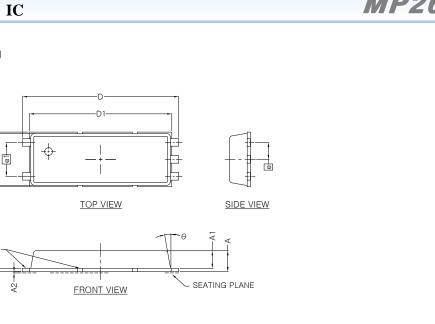

1. Overcharge, Overvoltage charger operations

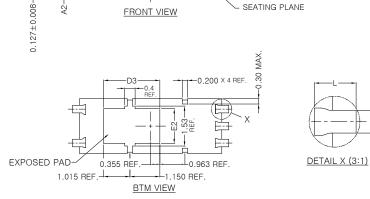


- 13 -

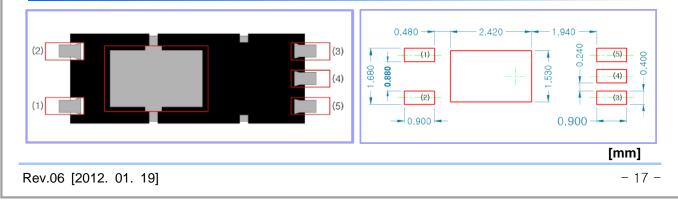


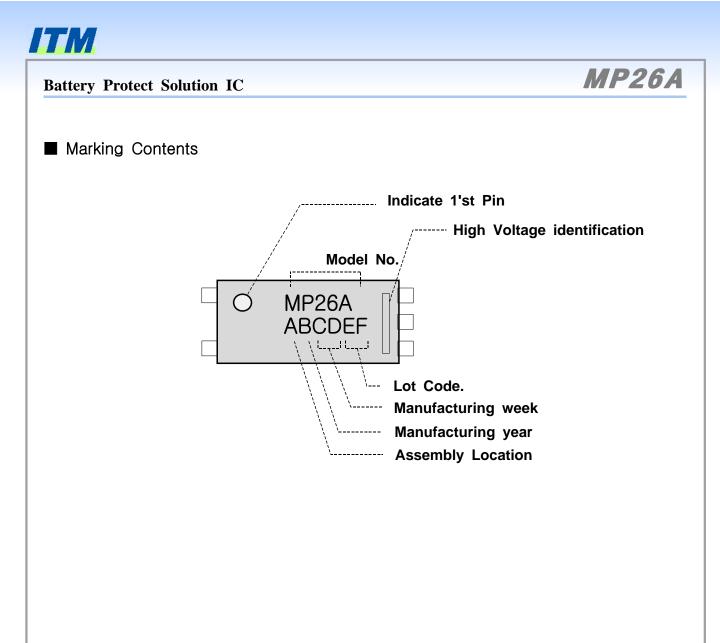
2. Overdischarge, Discharging Overcurrent and Short operations





Package Description


SYMBOL		DIMENSIONS				
STMBUL	MIN.	NOM.	MAX.	NOTE		
A	0.750	0.800	0.850			
A1	0.623	0.673	0.723			
A2	-	-	0.050			
D	5.900	6.000	6.100			
D1	5.320	5.370	5.420			
D3		2.220 Rf	EF.			
E	2.000	2.100	2.200			
E1	1.950	2.000	2.050			
E2		1.330 RE	EF.			
θ	-	-	10 °			
е						
e1		1.300 B	SC			
L	0.350	-	-			
b	0.255	0.300	0.390			


BURR SIDE

NOTE

- NOTE 1. LEAD BURR : VERTICAL MAX 0.025 HORIZONTAL MAX 0.025 BURR SIDE : ALL TOP SIDE 2. MOLD BURR & FLASH : PACKAGE OUT LINE BURR MAX 0.100 EXPOSED PAD FLASH MAX 0.200 3. PACKAGE WARPAGE MAX 0.025 4. LEAD AND EXPOSED PAD PLATING : PURE TIN THICKNESS> 7.62~25.4um

Recommend Land Pattern (timeshare)

