16 Channel LED Controller for LCD Backlight

Features

- Wide range input is 9 V to 24 V
- High Accurate LED Current 1\%Typ.(ILED=120mA)
- 16 Channel flexible PFM genrators and independent for 14 Bits PFM brigntness
- Synchronization with TV Frame - VSYNC / HSYNC / Digital PLL Integrated
- Digital Configurable DC/DCFeedback
- Protection For Safety Features
- LED Short Detection
- LED Open Detection
- Temperature Shutdown detection
- UVLO
- PFM Dimming Via SPI Interface
- Adaptive Control Mode For High Efficiency
- Available In QFN 7x7-48 Package
- One global high accurate 10 bit DAC which sets the LED current.

Applications

- Televisions
- Monitors

General Description

The APE5030A are integrates Mosfet and 16 channel LED controller for LCD backlight. It's high accurate LED current 1% (120 mA LED current) and wide input voltage range.
The APE5030A has 16 Channel flexible PFM genrators and independent 14 bits PFM brigntness were control LED current for every channel. in addition; It's has one global high accruate 10 bit DAC which sets the LED current. It's synchronization with TV Frame including VSYNC/HSYNC and Digital PLL method.
The APE5030A has two pin can be digital configurable DC/ DC feedback, that's for control DC/DC architecture. As the same time; the device using programmable via SPI interface.
The version APE5030A is factory pre-programmed to Direct_PWM is " 1 " but it can still be configured via the SPI interface. (e.g. switch to internal PFM generation) In this mode APE5030A has the following default configuration after power on:

- All current outputs are ON
- All feedback controls are enabled and connected to FB1
- OPEN LED detection is enabled
- OPEN LED detection auto turn off is enabled
- OPEN LED detection retrial function is enabled
- SHORT LED detection (SHORT-COMP) is enabled
- SHORT LED detection auto turn off is enabled
- Undervoltage lockout and over temperature detection are enabled
The APE5030A own adaptive control mode for high efficiency. it's build-in protection for safety, include LED short, LED Open, temperature shutdown protection and UVLO. The APE5030A has adaptive control mode method for high efficiency and increase power loss cause to temperature. The APE5030A is available in QFN 7x7-48 packages.

Ordering and Marking Information

APE5030A	Package Code QA: QFN7x7-48 Operating Ambient Temperature Range $\text { I: }-40 \text { to } 85^{\circ} \mathrm{C}$ Handling Code TR: Tape \& Reel Lead Free Code L: Lead Free Device G: Halogen and Lead Free Device
APE5030A QA : \square	XXXXX - Date Code

Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for MSL classification at lead-free peak reflow temperature. ANPEC defines "Green" to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

Simplified Application Circuit

Note:When LED1 to 16 of APE5030A pin-out location to external LED string cathode location has execcd 1uH wire inducutance, suggestion add the MLCC capcitors for holdout interference.

Pin Configurations

Absolute Maximum Ratings (Note 1)

Symbol	Parameter	Rating	Unit
$\mathrm{V}_{\text {IN }}$	VIN Supply Voltage (VIN to PGND)	$-0.3 \sim 26$	V
$\mathrm{~V}_{\text {ANALOG }}$	LED1~LED16 to PGND	$-0.3 \sim 60$	
	VSYNC, HSYNC, FB1, FB2 and RSET to PGND	$-0.3 \sim 7$	V
$\mathrm{~V}_{\text {DIGITAL }}$	VDD5, SDI, SDO, SCL, xCS and xFault to RTN	$-0.3 \sim 7$	V
$\mathrm{~V}_{\text {GND }}$	RTN to PGND	$-0.3 \sim+0.3$	V
$\mathrm{~T}_{\mathrm{J}}$	Junction Temperature	V	
$\mathrm{T}_{\text {STG }}$	Storage Temperature	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SDR }}$	Maximum Lead Soldering Temperature(10 Seconds)	${ }^{\circ} \mathrm{C}$	

Note 1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Thermal Characteristics

Symbol	Parameter	Typical Value	Unit
θ_{JA}	Junction-to-Ambient Resistance in free air (Note 2)	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 2: θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air.

Recommended Operating Conditions (Note3)

Symbol	Parameter	Range	Unit
$\mathrm{V}_{\text {IN }}$	Input Supply Voltage	$9 \sim 24$	V
$\mathrm{~V}_{\text {LEDn }}$	LED String Voltage	~ 60	V
$\mathrm{I}_{\text {LED }}$	LED Current	$20 \sim 250$	mA
$\mathrm{CIN}^{\text {CVDD5 }}$	Input Voltage Capacitor	VDD5 Output Capacitor	$4.7 \sim$
RsET	External Setting LED Current Resistor	$2.2 \sim$	uF
T_{A}	Ambient Temperature	$6.2 \pm 1 \%$	uF
T_{J}	Junction Temperature	$-20 \sim 85$	$\mathrm{~K} \Omega$

Note 3: Refer to the typical application circuit.

Electrical Characteristics

Unless otherwise specified, these specifications apply over $V_{I N}=12 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Test Condition	APE5030A			
			Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	Input Voltage Range		9	-	24	V
$\mathrm{V}_{\text {LDO }}$	LDO Voltage Regulation Output	$\mathrm{I}_{\text {LOAD }}=20 \mathrm{~mA}$	4.5	5	5.5	V
$\mathrm{V}_{\text {IN-POR }}$	VIN Power On Reset Level	VIN Rising	7.5	8	8.5	V
$\mathrm{V}_{\text {In_uvlo }}$		VIN Falling	-	1	-	V
		Turn Off ILED Current	-	7.6	-	V
	Power On Delay Time	VIN POR to Command Time	-	10	-	ms
I_{0}	Quiescent Current	$\mathrm{VIN}=9 \mathrm{~V},$ Default Setting (Standby mode)	-	-	20	mA
		VIN=9V, VDAC_Reg_Code[9:0]=4 Clocksrc0 0x13 bit[6] ="0" and clocksrc0 0x13 bit [5]="1"	-	-	3	mA
	Shutdown Current	VIN=9V, 0×59 bit [0]=0 to 1	-	-	1	mA
ILED _250_120	Current Accuracy	$\begin{array}{\|l} \text { ILED }=119.96 \mathrm{~mA}, \text { REG_ } \\ \text { Code[9:0] }=476,25^{\circ} \mathrm{C} \\ \text { (Note:It's not include RSET) } \end{array}$	-1	-	1	\%
$\mathrm{I}_{\text {LED_250_20 }}$	Current Accuracy	$\begin{aligned} & \text { ILED=19.91mA, REG_Code[9:0]=79, } \\ & 25^{\circ} \mathrm{C} \\ & \text { (Note:It's not include RSET) } \end{aligned}$	-2	-	2	\%
$\mathrm{I}_{\text {LED_250_250 }}$	Current Accuracy	$\begin{aligned} & \text { ILED }=250 \mathrm{~mA}, \text { REG } \\ & \text { Code[9:0]=992,25 }{ }^{\circ} \mathrm{C} \\ & \text { (Note:It's not include RSET) } \end{aligned}$	-2	-	2	\%

Electrical Characteristics (Cont.)

Unless otherwise specified, these specifications apply over $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Test Condition	APE5030A			
			Min.	Typ.	Max.	Unit
$\mathrm{I}_{\text {LEd_800_alL }}$	LED Current Accuracy to All Temperature	$\begin{aligned} & \mathrm{I}_{\text {LED }}=119.96 \mathrm{~mA}, \text { REG_Code[9:0] }=476, \\ & -25 \sim 85^{\circ} \mathrm{C} \end{aligned}$	-2	-	2	\%
		$\begin{aligned} & \mathrm{I}_{\text {LED }}=250 \mathrm{~mA}, \text { REG_Code }[9: 0]=992, \\ & -25 \sim 85^{\circ} \mathrm{C} \end{aligned}$	-2.5	-	2.5	\%
		$\begin{aligned} & \mathrm{I}_{\text {LED }}=19.91 \mathrm{~mA}, \text { REG_Code }[9: 0]=79, \\ & -25 \sim 85^{\circ} \mathrm{C} \end{aligned}$	-2.5	-	2.5	\%
$\mathrm{I}_{\text {Led_ch }}$	Channel to channel current matching	$\mathrm{I}_{\mathrm{LED}}=119.96 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ (Note:It's not include RSET)	-2	-	2	\%
$\mathrm{I}_{\text {fB_MAX }}$	Feedback Current Maximum	$\mathrm{V}_{\text {FB_ }} \mathrm{X}>0.25 \mathrm{~V}$	251	255	259	uA
FB ${ }_{\text {IDAC_LsB }}$	FB_DAC_LSB		-	1	-	uA
$\mathrm{T}_{\text {OTP }}$	Over-temperature	Temperature rising	145	160	175	${ }^{\circ} \mathrm{C}$
TotP_HYS	Temperature hysteresis		-	20	-	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {Short_Min }}$	Minimum PFM on time to detect shorted LEDs		-	10	-	us
$\mathrm{F}_{\text {osc }}$	Internal Clock for PFM		7.2	8	8.8	MHz
$\mathrm{F}_{\mathrm{HSYNC}}$	HSYNC Frequency		100	-	20000	KHz
$\mathrm{F}_{\text {VSYNC }}$	VSYNC Frequency		60	-	40000	Hz
$\mathrm{V}_{\text {vSYNC }}$	VSYNC Duration		5	-	-	us
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	Input PIN (VSYNC, HSYNC, xCS, SCL,SDI	1.7	-	$\begin{gathered} \hline \mathrm{V}_{\mathrm{DD} 5}{ }^{+} \\ 0.3 \\ \hline \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	Input PIN (VSYNC, HSYNC, xCS, SCL,SDI	-0.3	-	1	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \text { Output PIN, (xFAULT) } \\ & \text { I=2mA } \end{aligned}$	$\begin{gathered} \text { VDD5- } \\ 0.3 \\ \hline \end{gathered}$	-	-	V
$V_{\text {oL }}$	Low Level Output Voltage	$\begin{aligned} & \text { Output PIN, (xFAULT) } \\ & \mathrm{I}=2 \mathrm{~mA} \end{aligned}$	-	-	0.3	V
$\mathrm{V}_{\text {OL_PD }}$	Low Level Output Voltage Open Drain Outputs	$\mathrm{I}=2 \mathrm{~mA}$	-	-	0.3	V
$\mathrm{R}_{\text {PU }}$	Input Resistance Pull-up	$\mathrm{VIN}=12 \mathrm{~V}, \mathrm{xCS}=\mathrm{GND}$	-	300	-	$\mathrm{K} \Omega$
$\mathrm{R}_{\text {PD }}$	Input Resistance Pull-down	$\begin{aligned} & \text { VIN=12V,VSYNC, } \\ & \text { HSYNC, SCL, SDI=5V } \end{aligned}$	-	300	-	K Ω
$\mathrm{I}_{\text {LEK }}$	Leakage Current	VIN=12V, For $\mathrm{xFault}, \mathrm{FB1}, \mathrm{FB2}$	-	-	1	$\mu \mathrm{A}$

Pin Description

PIN		FUNCTION
NO.	NAME	
1	LED1	LED Cathode Connection For LED String1.
$\begin{gathered} \hline 2,11,13,15,17,20, \\ 22,24,26,35,37, \\ 39,41,44,46,48 \\ \hline \end{gathered}$	PGND	Power Ground For LED Current Return Path.
3	VIN	Input Supply Voltage.
4,32	RTN	Analog Ground.
5	VDD5	Internal 5V LDO For Analog and Digital Circuit.
6	RSET	External Setting Iset Current Resistor, RSET to GND connection 6.2K ($\pm 1 \%$)
7	FB2	DC/DC Power Supply Feedback Output2
8	FB1	DC/DC Power Supply Feedback Output1
9	NC	No Connection.
10	VSYNC	Vertical sync frequency. PFM Generator Reset
12	LED16	LED Cathode Connection For LED String16.
14	LED15	LED Cathode Connection For LED String15.
16	LED14	LED Cathode Connection For LED String14.
18	LED13	LED Cathode Connection For LED String13.
19	LED12	LED Cathode Connection For LED String12.
21	LED11	LED Cathode Connection For LED String11.
23	LED10	LED Cathode Connection For LED String10.
25	LED9	LED Cathode Connection For LED String9.
27	xFault	Open Drain Fault Output, Connect Pull-up to VDD5
28	xCS	SPI Interface Chip Select.
29	SDO	SPI Interface Data Output. Tristate Output
30	SCL	SPI Interface Clock
31	SDI	SPI Interface Data Input
33	RTN	Digital and I/O Ground.
34	HSYNC	Clock Input For PFM Generators
36	LED8	LED Cathode Connection For LED String8.
38	LED7	LED Cathode Connection For LED String7.
40	LED6	LED Cathode Connection For LED String6.
42	LED5	LED Cathode Connection For LED String5.
43	LED4	LED Cathode Connection For LED String4.
45	LED3	LED Cathode Connection For LED String3.
47	LED2	LED Cathode Connection For LED String2.

Typical Operating Characteristics

OperatingWaveforms

Normal Operation
(ILED=250mA)

CH1:-
CH2:LEDx V Drain -500mV/div
CH3:-
CH4:ILEDx-100mA/div
Time:200us/div

Update Mode (xCS)
PFM duty 100% to 0%

Start up - Current on enable

Update Mode (Vsync) PFM duty 50\% to 100%

OperatingWaveforms (Cont.)

BIST Function - Wait 3 VSYNC

Short LED - Retrial

CH1: $\mathrm{V}_{\text {xFAuLT }}$-5V/div
CH2:V ${ }_{\text {LED Drain }}-5 \mathrm{~V} / \mathrm{div}$
CH3:V ${ }^{\text {out-10 }} 10 \mathrm{~V} / \mathrm{div}$
CH4:ILED- $200 \mathrm{~mA} / \mathrm{div}$
Time:100ms/div

VSYNC Detection

OperatingWaveforms (Cont.)

Block Diagram

Typical Application Circuit

Note 4:When LED1 to 16 of APE5030A pin-out location to external LED string cathode location has execcd 1uH wire inducutance, suggestion add the MLCC capcitors for holdout interference.

Function Descriptions

Power Sequence and UVLO

The APE5030A are integrates Mosfet and 16 channel LED controller for LCD backlight. It's high accurate LED current 1% (120 mA LED current) and wide input voltage range.

The APE5030A Using power sequence as below figure 1:

Figure 1: Power Sequence
When VIN supply power voltage exceeds input POR level, the APE5030A will be standby mode status. At this time, the SPI commend can be reading / writing after must waiting 10 ms .
The VIN supply power is falling down to 7.6 V (typ) then all LED current channels will be shutdown. In the same time; the current on register will be clear to default value and others register are keep previous status. If the VIN supply power voltage was continuous falling down to UVLO=7V (falling) then the APE5030A is shutdown mode.

Table 1: UVLO Register

Address	Bit	Name	Description
03h	$[4]$	Auto_off_UV	Note 5

Note 5:
Bit [4] =0 ... Under voltage lockout disabled.
Bit [4] =1 ... Under voltage lockout enabled.

If this bit is set to 0 then when the VIN supply voltage is falling down to $7.6 \mathrm{~V}($ typ $)$ then LED current is still operation until to VIN voltage is falling down to 7 V (typ), the all LED current will be turn off and all register will be clear to default value and IC was shutdown mode. On the contrary; the bit [4] is setting to 1 when the VIN supply power is falling down to 7.6 V (typ) then all LED current channels will be shutdown. In the same time; the current_on register will be clear to default value and others register are keep previous status.

LED Short Detection

The APE5030A has LED short detection function, when LED string happen short conditions then APE5030A can detection the abnormal condition. The register address 0×64 bit [2:0] are setting LED string short condition, it's from 3 V adjustment to 12 V for different LED string application.

Table 2: Short LED Function Register

Address	Bit	Name	Description
64 h	$[2: 0]$	Short_level[2:0]	Note 6

Note 6:
Short detection voltage based on drain.
Bit $[2: 0]=000 \ldots 3 \mathrm{~V}$
Bit $[2: 0]=001 \ldots 4 \mathrm{~V}$
Bit $[2: 0]=110 \ldots 9 \mathrm{~V}$
Bit [2:0] =111 ... 12V

Function Descriptions (Cont.)

Table 3: Short LED Function Register

Address	Bit	Name	Description
64 h	$[3]$	LED_Short_EN	Note 7

Note 7:
Bit [3] $=0$... Short LED detection disabled
Bit [3] =1 ... Short LED detection enable.
APE5030A LED short detection function is want to enable must using register address 0×64 bit[3]=1 then LED short detection will be enable. On the contrary; the LED short function will be disabling.

Table 4: Short LED Function Register

Address	Bit	Name	Description
64 h	$[5]$	Short_Retrial	Note 8
64 h	$[4]$	Short_auto_off	Note 9

Note 8:
Bit [5] $=0$... short retrial function disable
Bit [5] =1 ... short retrial function enable.
Note 9:
Bit [4] $=0$... short auto-off function disable
Bit [4] $=1 \ldots$ short auto-off function enable.
APE5030A short LED function has retrial and auto-off behavior. If APE5030A want to enable auto-off function then register address 0×64 bit [3] must is 1 and register address 0×64 bit[4] =1, at this time; the LED1 to LED16 voltage was exceed setting short_level [2:0] then LED channels will be turn off. On the contrary; the LED channels was normal operation.
If short LED function behavior is retrial function then register address $0 x 64$ bit[3], 0x64 bit[4] and 0×64 bit[5] are setting 1, when LED1 to LED16 voltage was exceed short_level [2:0] then LED channels will be on-off phenomenon, On the contrary; the LED channels were normal operation.

Table 5: retrial time setting Register

Address	Bit	Name	Description
14 h	$[7: 0]$	Retrial_Time_L	Note 10
15 h	$[2: 0]$	Retrial_Time_H	Note 10

Note 10:
The address $0 \times 15 \mathrm{~h}$ bit[2:0] and $0 \times 14 \mathrm{~h}$ bit[7:0] are setting LED open and short LED retrial time, the resolution is per $1 \mathrm{~ms} / \mathrm{LSB}$.
$0 \times 15 \mathrm{~h}$ bit[2:0]=000, $0 \times 14 \mathrm{~h}$ bit[7:0]=00000000 ... no retrial time.
$0 x 15 \mathrm{~h}$ bit[2:0]=000, 0x14h bit[7:0]=00000001 ... 1 ms .
$0 \times 15 \mathrm{~h}$ bit[2:0]=000, $0 \times 14 \mathrm{~h}$ bit[7:0] $=00000010 \ldots 2 \mathrm{~ms}$.
...
$0 \times 15 \mathrm{~h}$ bit[2:0]=111, 0x14h bit[7:0]=11001110 ... 1998ms.
$0 \times 15 \mathrm{~h}$ bit[2:0]=111, $0 \times 14 \mathrm{~h}$ bit[7:0]=11001111 ... 1999ms.

When short LED function was happen and short LED is retrial behavior, the retrial time can be setting and fault times also can be setting by register, see the table 5 and 6.

Table 6: Short LED Function Register

Address	Bit	Name	Description
64 h	[7:6]	Short_debouncer	$00: 1$ fault
			$01: 6$ faults

Suggestion the APE5030A using the LED short detection must the address register current_on can to 1 after the address 0×64 bit [5:3] is setting finished first.

LED Open Detection

The APE5030A has LED open detection function, when LED string or any LED happen open condition then the APE5030A can detection that abnormal operation.

Table 7: LED Open Function Register

Address	Bit	Name	Description
03 h	$[1]$	LED_Open_EN	Note 11

Note 11:
Bit [1] $=0$... LED Open detection disabled
Bit [1] =1 ... LED Open detection enable.
APE5030A LED open detection function is want to enable must using register address 0×03 bit[3]=1 then LED open detection will be enable. On the contrary; the LED short function will be disabling.

Table 8: LED Open Function Register

Address	Bit	Name	Description
03 h	$[3]$	Retrial_Open	Note 12
03 h	$[0]$	Auto_Off_Open	Note 13

Note 12:
Bit [3] $=0$... retrial open function disable
Bit [3] =1 ... retrial open function enable.
Note 13:
Bit [4] $=0$... auto-off open function disable
Bit [4] =1 \ldots. auto-off open function enable.

Function Descriptions (Cont.)

APE5030A LED open detection function has retrial open and auto-off open behavior. If APE5030A want to enable auto-off open function then register address 0×03 bit [1] must is 1 and register address 0×03 bit[0] =1, at this time; the LEDx voltage was lower than then internal threshold then LEDx channels will be turn off and latch. Even if the LED open failure was eliminate then LEDx channels are not work properly. The auto-off open function sees the figure 2 as below:

Figure 2: LED open - auto off
If the LED open function is want to retrial behavior, the register address 0×03 bit [1] and 0×03 bit [3] setting to 1 . When any LEDx channels are open then IDACx will be increase to max value until to LED open is still existence. The detail LED open retrial behavior sees the figure 3 as below:

Figure 3: LED open - retrial
The open detection function needs to be combined with the FB function. The open function will be action. Otherwise the open function was not reaction.

OTW and OTP

The APE5030A has OTW and OTP protection function, when APE5030A happen any abnormal operation causes to over temperature until to reach OTP then the xfault pin will be turn low. The table 9 is setting.
Table 9: Auto-off OTP Register

Address	Bit	Name	Description
03h	$[2]$	Auto_off_OTP	Note 15

Note 15:
Bit [2] =0 ... temperature shutdown disabled.
Bit [2] $=1 \ldots$ temperature shutdown enable.
The table 9 is setting auto-off OTP, when this bit is setting to 1 then LED current will be turn off when happen OTP condition. On the contrary; the OTP function will be disabling. By the way; when the auto-off OTW and OTW selection was setting then auto-off OTP was not setting to 1 still can be turn off LED current. Secondly; the address 0×60 bit [4] is detection the OTP fault register. If this bit was written to 1 then OTP happen, On the contrary; the OTP condition is not happen. The same detection function address 0×60 bit [6] is detection OTW function; the function is the same OTP. The address 0×60 bit [6] must cooperate address 0×03 bit [7:6] was setting to 00 to 10 then this bit can be response.
Table 10: OTW Selection Function Register

Address	Bit	Name	Description
03h	$[7: 6]$	OTW Selection	Note 16

Note 16:
Bit $[7: 6]=00 \ldots 110^{\circ} \mathrm{C}$
Bit $[7: 6]=01 \ldots 120^{\circ} \mathrm{C}$
Bit $[7: 6]=10 \ldots 140^{\circ} \mathrm{C}$
Bit [7:6] $=11$... Disable.
The table 10 is setting OTW selection register; it does can be setting different OTW point and OTW function disable.

Table 11: Auto-off OTW Register

Address	Bit	Name	Description
03 h	$[5]$	Auto_off_OTW	Note 17

Note 17:
Bit [5] =0 ... Warning temperature (OTW) shutdown disabled.
Bit [5] =1 ... Warning temperature (OTW) shutdown enabled.

The table 11 is setting auto_off OTW function, when this bit is setting to 1 then the temperature is reaction to OTW point, the LED current will be turn off, on the contrary; then LED current is not turn off.

Function Descriptions (Cont.)

To sum it up the OTW and OTP function; the as below table 12 has OTW and OTP true table can see overall behavior.

Table 12: OTW and OTP true table

Temperature	OTW SEL	OTW	OTP	OTW Fault register	OTP Fault register	LED Current	xFault PIN
Temp $>110^{\circ} \mathrm{C}$	0	0	0	x	x	x	High
Temp $>160^{\circ} \mathrm{C}$	0	0	0	x	fault	x	Low
Temp $>110^{\circ} \mathrm{C}$	0	0	1	x	x	x	High
Temp $>160^{\circ} \mathrm{C}$	0	0	1	x	fault	shutdown	Low
Temp $>110^{\circ} \mathrm{C}$	0	1	0	x	x	x	High
Temp $>160^{\circ} \mathrm{C}$	0	1	0	x	fault	x	Low
Temp $>110^{\circ} \mathrm{C}$	0	1	1	x	x	x	High
Temp $>160^{\circ} \mathrm{C}$	0	1	1	x	fault	shutdown	Low
Temp $>110^{\circ} \mathrm{C}$	1	0	0	fault	x	x	Low
Temp $>160^{\circ} \mathrm{C}$	1	0	0	fault	fault	x	Low
Temp $>110^{\circ} \mathrm{C}$	1	0	1	fault	x	x	Low
Temp $>160^{\circ} \mathrm{C}$	1	0	1	fault	fault	shutdown	Low
Temp $>110^{\circ} \mathrm{C}$	1	1	0	fault	x	shutdown	Low
Temp $>160^{\circ} \mathrm{C}$	1	1	0	fault	fault	shutdown	Low
Temp $>110^{\circ} \mathrm{C}$	1	1	1	fault	x	shutdown	Low
Temp $>160^{\circ} \mathrm{C}$	1	1	1	fault	fault	shutdown	Low

Adaptive Control Mode

The APE5030A has adaptive control mode function. Its main protection LEDx voltage is over than LED normal operation voltage cause to IC temperature is too high issue.

The adaptive control mode mechanism is mainly used the LEDx voltage over than the setting internal threshold, the LED current will be change to LED current setting multiply by 1.375 times (if need to max ability condition) increase and the LED current on duty will be reducing to the LED current average value is the same before adaptive control mode is not enable. The waveform can see figure 4 as below.

Figure 4: Adaptive Control Mode

Figure 5: Adaptive Control Mode Example
For example; Using the vsync signal is 60 Hz and PFM duty was setting to 75%, in the meantime; the adaptive control function was not enable. When adaptive control function condition already reach then adaptive control function will be enable, see that figure 5 . when the adaptive function enable then LED current will be appear to PFM method showing, in the meantime; the LED current peak value will be change and increase the peak current, the PFM duty will be change and decrease, the LED current between enable and disable was not change. The PFM duty and LED current change mechanism will be through the algorithm to realization.

The adaptive control mode enable conditions must include as below condition:
a. Address 0×07 bit [7] is setting to 1 .
b. LEDx voltage is more than address 0×07 bit [5:4] value.
c. The setting VADC value is more than address $0 \times 6 \mathrm{D}$ and $0 \times 6 \mathrm{E}$ value.
d. The setting PFM brightness value is more than address $0 \times 6 \mathrm{~F}$ and 0×70 values.
e. Vsync signal must exist.

Table 13: ASW_EN Register

Address	Bit	Name	Description
07h	$[7]$	ASW_EN	Note 18

Note 18:
Bit [7] =0 ... Adaptive control disabled.
Bit $[7]=1$... Adaptive control enabled.
This bit is setting to 1 then adaptive control enable. Otherwise the adaptive control is disabling.

Table 14: Aswitch_VSEL Register

Address	Bit	Name	Description
07h	$[5: 4]$	Aswitch_VSEL	Note 19

Note 19:
Bit $[5: 4]=00 \ldots 0.6 \mathrm{~V}$.
Bit $[5: 4]=01 \ldots 0.8 \mathrm{~V}$.
Bit $[5: 4]=10 \ldots 0.4 \mathrm{~V}$.
Bit $[5: 4]=11 \ldots 0.5 \mathrm{~V}$.

Function Descriptions (Cont.)

That bits are setting LEDx voltage threshold, when actual LEDx voltage is more than the value then adaptive control will be enable, if LEDx voltage is not exceed this setting then that disable.
Table 15: ASW_VADC_TH Register

Address	Bit	Name	Description
6Dh	$[7: 0]$	ASW_VADC_TH_H[9:2]	-
6Eh	$[1: 0]$	ASW_VADC_TH_L[1:0]	-

$0 \times 6 \mathrm{Dh}$ bit [7:0] and 0x6Eh bit [1:0] are setting VDAC threshold, when the value is not exceed the VDAC setting ($0 \times 0 \mathrm{Ch}$ bit [7:0] and $0 \times 0 \mathrm{Dh}$ bit [1:0]) then the adaptive control mode is enable. It's the same; if that's value is exceed VDAC setting then disable. In addition; $0 \times 6 \mathrm{Dh}$ bit [7:0] and 0x6Eh bit [1:0] resolution is $0.78125 \mathrm{mV} / \mathrm{bit}$.

If the DAC code was setting 1 to 495 then the resolution is $1.5625 \mathrm{mV} / \mathrm{Bit}$, otherwise; the resolution was $0.78125 \mathrm{mV} / \mathrm{bit}$.

Table 16: ASW_Brightness_TH Register

Address	Bit	Name	Description
6Fh	$[7: 0]$	ASW_BRI_TH_L[9:2]	-
70 h	$[5: 0]$	ASW_BRI_TH_H[13:8]	-

$0 x 6 \mathrm{Fh}$ bit [7:0] and 0x70h bit [5:0] are setting ASW brightness threshold, when the value is the same not exceed the PFM brightness setting ($0 \times 37 \mathrm{~h}$ to $0 \times 65 \mathrm{~h}$) then the adaptive control mode is enable. It's the same; if that's value is exceed brightness setting then disable. In addition; $0 \times 6 \mathrm{Fh}$ bit [7:0] and 0x70h bit [5:0] resolution is $0.0061 \% /$ bit.

Suggestion the APE5030A using adaptive control mode must will be set the condition a to e finished first before current _on can be to 1 . Moreover; if the adaptive control mode has occurred before any one of the conditions a to e does not exist, the adaptive controling mode is irreversible. The mean is adaptive control mode has happen, even if the adaptive control mode enable conditions to had any one is not exist; the adaptive control mode was still start up.

PFM mode

The figure 6 is PFM mode mechanism. Its use to 16 sub frame set into one cycle. When the PFM brightness duty is increase, the LED current will also increase. The increase method is using plug-in and sequentially.

Figure 6: LED current of PFM mode

LEDx channels on/off

The APE5030A has 16 LED channels that can be individually control on/off, see then table 17;
Table 17: LEDx channels on/off Register

Address	Bit	Name	Description
01h	$[7: 0]$	Curr_8-Curr_1	Note 20
02h	$[7: 0]$	Curr_16 - Curr_9	Note 21

Note 20:
Bit $[7: 0]=00000000$... LED8 to LED1 turn off.
Bit [7:0] $=00000001$... LED1 turn on.
Bit [7:0] $=00000010 \ldots$ LED2 turn on.
Bit $[7: 0]=01000000$... LED7 turn on.
Bit [7:0] =10000000 ... LED8 turn on.
Every bit is control individually LED channel on/off.
Note 21:
Bit [7:0] =00000000 \ldots. LED16 to LED9 turn off.
Bit $[7: 0]=00000001 \ldots$ LED9 turn on.
Bit [7:0] $=00000010 \ldots$... LED10 turn on.
Bit $[7: 0]=01000000$... LED15 turn on.
Bit [7:0] =10000000 ... LED16 turn on.
Every bit is control individually LED channel on/off.

Function Descriptions (Cont.)

VDAC Adjustment

The APE5030A include 10 bits VDAC code, it's provide user can be adjustment the voltage and then adjustment LED current. The every bit correspond VDAC code voltage and LED current as below table 18:

Suggestion the write the VDAC code sequences as below: First writing address $0 \times 0 \mathrm{D}$ and then writing address $0 \times 0 \mathrm{C}$, the VDAC data will be update.
Table 18: VDAC Correspondence table

Bit(dec)	VDAC (mV)	LED current (mA)
1	1.5625	~ 0.252
79	123.44	20
476	743.8	120
496	775	125
497	388.28	125.244
992	775	250

In addition; the address $0 \times 0 \mathrm{C}$ and $0 \times 0 \mathrm{D}$ are setting VDAC code, see the table19.

Table 19: VDAC Register

Address	Bit	Name	Description
0Ch	$[7: 0]$	VDAC[9:2]	-
0Dh	$[1: 0]$	VDAC[1:0]	-

This is simple calculation formula for $V_{D A C}$ exchange to $I_{\text {LED }}$ (mA).If the register DAC_Code values are from 1 to 496 then $V_{D A C}$ and $I_{\text {LED }}$ formula equal as below:
$V_{D A C}(m V)=2^{*}(800 \mathrm{mV} / 1024)^{*}$ DAC_Code
$\mathrm{I}_{\text {Led }}(\mathrm{mA})=(\mathrm{VDAC} / 6.2 \mathrm{~K})^{*} 1000$
When the registrer DAC_Code values more than 497 then $V_{D A C}$ and $I_{\text {LED }}$ formula equal as below:
$V_{\text {DAC }}(m V)=(800 \mathrm{mV} / 1024)^{*}$ DAC_Code
$\mathrm{I}_{\text {LED }}(\mathrm{mA})=(\mathrm{VDAC} / 6.2 \mathrm{~K})^{*} 2000$

Dual Channels Control

The address $0 \times 13 \mathrm{~h}$ bit [7] is setting dual channels function. The mainly effect is even channel LED current follow odd channel LED current.

Table 20: Dual Channels Register

Address	Bit	Name	Description
13 h	$[7]$	Dual_channel	Note 22

Note 22:
Two channel combine: even number channel control by odd channel (EX, ch2 PFM output = ch1 PFM output):
Bit $[7]=0$... disable.
Bit [7] =1 ... enable.

If dual channel function is wants to using then address $0 \times 13 \mathrm{~h}$ bit [7] must setting to 1 and the PFM brightness also must setting. Finally; the current on register can be turn on.
Suggestion the registers were setting; the registers value should not be adjusted.

PFM Delay and PFM Brightness

The address 0×16 to 0×35 is setting PFM delay time. It's has 12 bits resolution can adjustment LED1 to LED16. Secondly PFM delay function must cooperation VSYNC can be working. The register sees the register map.
The address 0×37 to 0×56 is setting PFM brightness. It's has 14 bits resolution can adjustment LED1 to LED16. the resolution is approximate $0.061 \% / L S B$. Suggestion using the PFM brightness range is from 1% to 100%.

Decay Time

In order to auto adjustment optima output voltage by external circuit, it need to detect time and function. The table 21 is setting detection enable/disable. The detect time can be adjustment range from 32 ms change to 128 ms .
Suggestion the registers were setting; the registers value should not be adjusted.
Table 21: FB decay enable/disable Register

Address	Bit	Name	Description
66 h	$[7]$	Fb2_decay_off	Note 23
66 h	$[6]$	Fb1_decay_off	Note 24

Note 23:
Bit [7] $=0$... FB counter2 decay time is enable and defined by register decay_time.
Bit [7] =1 ... FB counter2 decay time is disable.
Note 24:
Bit [6] $=0 \ldots$ FB counter1 decay time is enable and defined by register decay_time.
Bit [6] $=1 \ldots$ FB counter1 decay time is disable.

Dynamic Feedback Control

The APE5030A has FB1 and FB2 terminal can be connect to feedback pin of external DC/DC circuit and control output voltage ($\mathrm{V}_{\text {LED }}$) for optimal power efficiency.
The dynamic control mechanism is according to output voltage is not enough condition and then increasing the FB-IDAC value, at the same time; output voltage also increase until to LED current achieve target.
In order to simplify design step, a few process step provide calculate and design as below:

Function Descriptions (Cont.)

Step 1: Calculate R1

The output voltage is depending on min to max range of LED. Design the R1 value according to with max IDAC value 255uA as below formula:

$$
\mathrm{R}_{1}=\frac{\mathrm{V}_{\mathrm{LED}(\mathrm{MAX})}-\mathrm{V}_{\mathrm{LED}(\mathrm{MIN})}}{255 \mathrm{u} A}
$$

Suggestion the R1 value multiply by IDAC current max value is not more than over voltage protection point of external DC/DC circuit. Otherwise; when the IDAC value is increasing to max value then happen protection of external DC/DC circuit. Secondly; the LED output voltage max to min range must according to actual LED specification.

Step 2: Calculate R2

The R2 value calculates as below formula:

$$
R_{2}=\frac{R_{1}}{\left(\frac{\mathrm{~V}_{\mathrm{LED}(\mathrm{MIN})}}{\mathrm{V}_{\mathrm{FB}}}-1\right)}
$$

The APE5030A using automatic mode and manual mode can be adjustment FB-IDAC current. If adjustment mode is choose the manual mode then using address 0×12 bit [5] and bit [4] setting to 1 and increasing the address 0×10 and 0×11 bit value so that increasing output voltage. According to formula as below:

$$
V_{\text {LED }}=\left(1+\frac{R_{1}}{R_{2}}\right) \times V_{F B}+R_{1} \times I D A C_{(\text {COUTER })} \times 1 \mathrm{uA}^{2}
$$

If one $D C / D C$ converter is connected 2 or more than APE5030A structure suggest series resistor between FBx terminal and DC/DC circuit feedback terminal let FBx current can up to 255 uA . The R3 value calculates as below:

$$
R_{3}=\frac{V_{F B}}{255 u \mathrm{~A}}
$$

If possible; try to let FBx pin terminal keep to 0.25 V and it's not less than 0.25 V .

Application Information

Layout Consideration

The APE5030A was using less external components. Suggestion the RSET, input capacitor and VDD5 capacitor are as possible closed to IC terminal.
If using APE5030A the layout consideration can be seen as below figure. When LED current was larges can cause to thermal issue, suggestion using to via then solve the thermal issue.
The holes and via numbers can be effect to thermal, if using holes and via are more, the thermal issue will be decreasing.
Thermal problem can using as below points can decrease the thermal issue:

1. Increasing the PCB dimension and add the copper plating of ground side areas.
2. If possible, the PCB layers suggest using 4 layers or more than layer is better.
3. Using the holes size and via connect to all layers and then decrease the thermal issue.
To sum it up, according to as be above points, the thermal issue will be effective decreasing and solution.

Minimum Footprint

QFN 7x7-48

Register Map

Register Address (hex)	Name	BIT	Label	Default	Description
0×01	CUR_ON_1	[7:0]	curr_8-curr_1	1111_1111	output drivers 8-1: 0 : output driver disabled 1: output driver enabled
0×02	CUR_ON_2	[7:0]	curr_16-curr_9	1111_1111	output drivers 16-9: 0 : output driver disabled 1: output driver enabled
0×03	FAULT_1	[7:6]	OTW_SEL	11	OTW pin configuration: $\begin{aligned} & 00: 110^{\circ} \mathrm{C} \\ & 01: 120^{\circ} \mathrm{C} \\ & 10: 140^{\circ} \mathrm{C} \\ & \text { 11:disable } \\ & \hline \end{aligned}$
		[5]	auto_off_OTW	1	0: Warning temperature (OTW) shutdown disabled 1: Warning temperature (OTW) shutdown enabled
		[4]	auto_off_uv	1	0: Under voltage lockout disabled 1: Under voltage lockout enabled, if VDD <VDD_UVL all channels are turned off by resetting CURRx-bits.
		[3]	retrial_open	1	0 : open LED retrial function disabled 1: open LED retrial function enabled
		[2]	auto_off_OTP	1	0 : temperature shutdown disabled 1: temperature shutdown enabled
		[1]	open_en	1	0 : open LED detection disabled 1 : open LED detection for all channels enabled
		[0]	auto_off_open	1	Automatic feedback turn off in case of open LED: 0 : feedback function of open LED channel enabled 1 : feedback function of open LED channel automatically disabled
0×04	GPIO_CTRL	[7:6]	fault_io_config[1:0]	00	xFault pin configuration: 00: Open Drain / Pulldown 01: Push - Pull 10: Disabled (HIZ) 11: not used
		[5:4]	SDO_io_config[1:0]	01	SDO pin configuration: 00: Open Drain / Pull down 01: Push - Pull 10: Disabled (HI-Z) 11: Not used
0x05	FB_SEL_1	[7]	fb_sel_8	0	select $F B$ channel for current outputs 8: 0 : select FB pin FB1 1: select FB pin FB2

Register Map (Cont.)

Register Address (hex)	Name	BIT	Label	Default	Description
0x05	FB_SEL_1	[6]	fb_sel_7	0	select FB channel for current outputs 7: 0: select FB pin FB1 1: select FB pin FB2
		[5]	fb_sel_6	0	select $F B$ channel for current outputs 6: 0: select FB pin FB1 1: select FB pin FB2
		[4]	fb_sel_5	0	select FB channel for current outputs 5: 0: select FB pin FB1 1: select FB pin FB2
		[3]	fb_sel_4	0	select FB channel for current outputs 4: 0: select FB pin FB1 1: select FB pin FB2
		[2]	fb_sel_3	0	select FB channel for current outputs 3: 0 : select FB pin FB1 1: select FB pin FB2
		[1]	fb_sel_2	0	select FB channel for current outputs 2: 0: select FB pin FB1 1: select FB pin FB2
		[0]	fb_sel_1	0	select FB channel for current outputs 1: 0: select FB pin FB1 1: select FB pin FB2
0×06	FB_SEL_2	[7]	fb_sel_16	0	select FB channel for current outputs 16: 0 : select FB pin FB1 1: select FB pin FB2
		[6]	fb_sel_15	0	select $F B$ channel for current outputs 15: 0: select FB pin FB1 1: select FB pin FB2
		[5]	fb_sel_14	0	select $F B$ channel for current outputs 14: 0: select FB pin FB1 1: select FB pin FB2
		[4]	fb_sel_13	0	select FB channel for current outputs 13: 0: select FB pin FB1 1: select FB pin FB2
		[3]	fb_sel_12	0	select FB channel for current outputs 12: 0: select FB pin FB1 1: select FB pin FB2
		[2]	fb_sel_11	0	select FB channel for current outputs 11: 0: select FB pin FB1 1: select FB pin FB2
		[1]	fb_sel_10	0	select $F B$ channel for current outputs 10: 0: select FB pin FB1 1: select FB pin FB2
		[0]	fb_sel_9	0	select FB channel for current outputs 9: 0: select FB pin FB1 1: select FB pin FB2

Register Map (Cont.)

Register Address (hex)	Name	BIT	Label	Default	Description
0x07	CURR_CTRL	[7]	ASW_EN	0	Adaptive control disable / enable : 0: Disable 1: Enable
		[5:4]	Aswitch_vsel	00	reference voltage for adaptive control configuration: $\begin{aligned} & \text { 00: } 0.6 \mathrm{~V} \\ & 01: 0.8 \mathrm{~V} \\ & 10: 0.4 \mathrm{~V} \\ & 11: 0.5 \mathrm{~V} \end{aligned}$
		[3]	phase_shift	0	0: phase shift on/off depends on register direct_pwm 1: phase shift is turned on (VSYNC must be selected as PFM source)
		[2]	Cgate_ compensation	1	Current output pre-charge compensation 0 : off 1: High Time counter is started when external FET has reached its threshold voltage
		[1:0]	slew_rate	11	Defines the slew rate of the output stage 00: $250 \mathrm{mV} / 16$ us 01: 250 mV / 8us 10: $250 \mathrm{mV} / 4$ us 11: Full speed
0x08	FAULT_SHORT_1	[7]	ShortLED_8	0	Short LED detected on output 8-1: Read: 0 : no short LED detected 1: Short LED detected Write: 1: clear fault
		[6]	ShortLED_7	0	
		[5]	ShortLED_6	0	
		[4]	ShortLED_5	0	
		[3]	ShortLED_4	0	
		[2]	ShortLED_3	0	
		[1]	ShortLED_2	0	
		[0]	ShortLED_1	0	
0x09	FAULT_SHORT_2	[7]	ShortLED_16	0	Short LED detected on output 16-9: Read: 0 : no short LED detected 1: Short LED detected Write: 1: clear fault
		[6]	ShortLED_15	0	
		[5]	ShortLED_14	0	
		[4]	ShortLED_13	0	
		[3]	ShortLED_12	0	
		[2]	ShortLED_11	0	
		[1]	ShortLED_10	0	
		[0]	ShortLED_9	0	

Register Map (Cont.)

Register Address (hex)	Name	BIT	Label	Default	Description
$0 \times 0 \mathrm{~A}$	OPENLED_1	[7]	OpenLED_8	0	Open LED detected on output 8-1: Read: 0 : no open LED detected 1: Open LED detected Write: 1: clear fault
		[6]	OpenLED_7	0	
		[5]	OpenLED_6	0	
		[4]	OpenLED_5	0	
		[3]	OpenLED_4	0	
		[2]	OpenLED_3	0	
		[1]	OpenLED_2	0	
		[0]	OpenLED_1	0	
0x0B	OPENLED_2	[7]	OpenLED_16	0	Open LED detected on output 16-9: Read: 0 : no open LED detected 1: Open LED detected Write: 1: clear fault
		[6]	OpenLED_15	0	
		[5]	OpenLED_14	0	
		[4]	OpenLED_13	0	
		[3]	OpenLED_12	0	
		[2]	OpenLED_11	0	
		[1]	OpenLED_10	0	
		[0]	OpenLED_9	0	
0x0C	VDAC_H	[7:0]	VDAC[9:2]	0111_0111	MSB - BITS OF 10 bit VDAC
0x0D	VDAC_L	[1:0]	VDAC[1:0]	00	LSB - BITS OF 10 bit VDAC
0x0E	FB_ON_1	[7:0]	FB_CURR_8-FB_ CURR_1	1111_1111	Enables feedback function of output channels: 0 : feedback function of selected channel disabled 1: feedback function of selected channel enabled
0x0F	FB_ON_2	[7:0]	FB_CURR_16-FB_ CURR_9	1111_1111	Enables feedback function of output channels: 0 : feedback function of selected channel disabled 1: feedback function of selected channel enabled
0×10	IDAC_FB1_ COUNTER	[7:0]	IDAC_FB1_counter	0000_0000	Feedback counter (IDAC) 1 value 0x00: FB-current $0 \mu \mathrm{~A}$ $0 x F F$: FB-current $255 \mu \mathrm{~A}$ Value can be overwritten if Fb_cnt_man_fb1=1
0x11	IDAC_FB2_ COUNTER	[7:0]	IDAC_FB2_counter	0000_0000	Feedback counter (IDAC) 2 value 0×00 : FB-current $0 \mu \mathrm{~A}$ 0xFF: FB-current $255 \mu \mathrm{~A}$ Value can be overwritten if Fb_cnt_man_fb2=1

Register Map (Cont.)

Register Address (hex)	Name	BIT	Label	Default	Description
(hex)	FBLOOP_CTRL	[7:6]	Vtrip[1:0]	00	Select gate voltage threshold for feedback function: 00: (VDD/8)*7 01: (VDD/8)*6 10: (VDD/8)*5 11: (VDD/8)*4
		[5]	FB_cnt_man_fb2	0	0 : FB2 counter in automatic mode 1: FB2 counter is set manually
		[4]	FB_cnt_man_fb1	0	0: FB1 counter in automatic mode 1: FB1 counter is set manually
		[3:2]	Fbcount_dn_time[1:0]	01	FB1 and FB2 down counting step time: 00: 512us 01: 2048us 10: 4096us 11: 8192us
		[1:0]	Fbcount_up_time[1:0]	01	FB1 and FB2 up counting step time: 00: 1024 $\mu \mathrm{s}$ 01: $256 \mu \mathrm{~s}$ 10: $64 \mu \mathrm{~s}$ 11: 16us
0×13	PFMCTRL	[7]	dual_channel	0	two channel combine : even number channel control by odd channel (EX, ch2 PFM output = ch1 PFM output) 0 : disable 1: enable
		[6]	ClockSrc1	0	Clock source for internal PFM generators 0 : internal RC oscillator or HSYNC (depending on ClockSrcO) 1: DPLL output
		[5]	ClockSrc0	0	Clock source for internal PFM generators 0 : internal RC oscillator 1: external pin HSYNC
		[4]	pfm_rev	0	0: normal PFM operation 1: PFM signals are inverted Note: High time becomes Low Time

Register Map (Cont.)

Register Address (hex)	Name	BIT	Label	Default	Description
					0: VSYNC detection disabled $1:$ VSYNC detection enabled
[3]	vsync_detect	0	All outputs are turned off if VSYNC signal is missing for 100ms.		

Register Map (Cont.)

Register Address (hex)	Name	BIT	Label	Default	Description
0x25	PFM8delMSB	[3:0]	PFM8del[11:8]	0000	PFM8 Delay MSB
0×26	PFM9delLSB	[7:0]	PFM9del[7:0]	0000_0000	PFM9 Delay LSB
0×27	PFM9delMSB	[3:0]	PFM9del[11:8]	0000	PFM9 Delay MSB
0×28	PFM10delLSB	[7:0]	PFM10del[7:0]	0000_0000	PFM10 Delay LSB
0x29	PFM10delMSB	[3:0]	PFM10del[11:8]	0000	PFM10 Delay MSB
0x2A	PFM11delLSB	[7:0]	PFM11del[7:0]	0000_0000	PFM11 Delay LSB
$0 \times 2 \mathrm{~B}$	PFM11delMSB	[3:0]	PFM11del[11:8]	0000	PFM11 Delay MSB
0x2C	PFM12delLSB	[7:0]	PFM12del[7:0]	0000_0000	PFM12 Delay LSB
0x2D	PFM12delMSB	[3:0]	PFM12del[11:8]	0000	PFM12 Delay MSB
0x2E	PFM13delLSB	[7:0]	PFM13del[7:0]	0000_0000	PFM13 Delay LSB
0x2F	PFM13delMSB	[3:0]	PFM13del[11:8]	0000	PFM13 Delay MSB
0x30	PFM14delLSB	[7:0]	PFM14del[7:0]	0000_0000	PFM14 Delay LSB
0×31	PFM14delMSB	[3:0]	PFM14del[11:8]	0000	PFM14 Delay MSB
0×32	PFM15delLSB	[7:0]	PFM15del[7:0]	0000_0000	PFM15 Delay LSB
0×33	PFM15delMSB	[3:0]	PFM15del[11:8]	0000	PFM15 Delay MSB
0×34	PFM16delLSB	[7:0]	PFM16del[7:0]	0000_0000	PFM16 Delay LSB
0x35	PFM16delMSB	[3:0]	PFM16del[11:8]	0000	PFM16 Delay MSB
0x37	PFM1brLSB	[7:0]	PFM1BR[7:0]	0000_0000	14'h0001: 0.0061\% 14'h0002: 0.0122\% 14'h0003: 0.0183\%
0x38	PFM1brMSB	[5:0]	PFM1BR[13:8]	00_0000	14'h3FFF: 100\% PFMBR/16383*100= Brightness percentage
0×39	PFM2brLSB	[7:0]	PFM2BR[7:0]	0000_0000	PFM2 Brightness LSB
0x3A	PFM2brMSB	[5:0]	PFM2BR[13:8]	00_0000	PFM2 Brightness MSB
0x3B	PFM3brLSB	[7:0]	PFM3BR[7:0]	0000_0000	PFM3 Brightness LSB
0x3C	PFM3brMSB	[5:0]	PFM3BR[13:8]	00_0000	PFM3 Brightness MSB
0x3D	PFM4brLSB	[7:0]	PFM4BR[7:0]	0000_0000	PFM4 Brightness LSB
$0 \times 3 \mathrm{E}$	PFM4brMSB	[5:0]	PFM4BR[13:8]	00_0000	PFM4 Brightness MSB
0x3F	PFM5brLSB	[7:0]	PFM5BR[7:0]	0000_0000	PFM5 Brightness LSB
0x40	PFM5brMSB	[5:0]	PFM5BR[13:8]	00_0000	PFM5 Brightness MSB
0x41	PFM6brLSB	[7:0]	PFM6BR[7:0]	0000_0000	PFM6 Brightness LSB
0x42	PFM6brMSB	[5:0]	PFM6BR[13:8]	00_0000	PFM6 Brightness MSB
0x43	PFM7brLSB	[7:0]	PFM7BR[7:0]	0000_0000	PFM7 Brightness LSB
0x44	PFM7brMSB	[5:0]	PFM7BR[13:8]	00_0000	PFM7 Brightness MSB
0x45	PFM8brLSB	[7:0]	PFM8BR[7:0]	0000_0000	PFM8 Brightness LSB
0x46	PFM8brMSB	[5:0]	PFM8BR[13:8]	00_0000	PFM8 Brightness MSB
0×47	PFM9brLSB	[7:0]	PFM9BR[7:0]	0000_0000	PFM9 Brightness LSB
0x48	PFM9brMSB	[5:0]	PFM9BR[13:8]	00_0000	PFM9 Brightness MSB
0x49	PFM10brLSB	[7:0]	PFM10BR[7:0]	0000_0000	PFM10 Brightness LSB
0x4A	PFM10brMSB	[5:0]	PFM10BR[13:8]	00_0000	PFM10 Brightness MSB
0x4B	PFM11brLSB	[7:0]	PFM11BR[7:0]	0000_0000	PFM11 Brightness LSB
0x4C	PFM1brMSB	[5:0]	PFM11BR[13:8]	00_0000	PFM11 Brightness MSB
0x4D	PFM12brLSB	[7:0]	PFM12BR[7:0]	0000_0000	PFM12 Brightness LSB

Register Map (Cont.)

Register Address (hex)	Name	BIT	Label	Default	Description
0x4E	PFM12brMSB	[5:0]	PFM12BR[13:8]	00_0000	PFM12 Brightness MSB
$0 \times 4 \mathrm{~F}$	PFM13brLSB	[7:0]	PFM13BR[7:0]	0000_0000	PFM13 Brightness LSB
0×50	PFM13brMSB	[5:0]	PFM3BR[13:8]	00_0000	PFM13 Brightness MSB
0×51	PFM14brLSB	[7:0]	PFM14BR[7:0]	0000_0000	PFM14 Brightness LSB
0x52	PFM14brMSB	[5:0]	PFM14BR[13:8]	00_0000	PFM14 Brightness MSB
0x53	PFM15brLSB	[7:0]	PFM15BR[7:0]	0000_0000	PFM15 Brightness LSB
0x54	PFM15brMSB	[5:0]	PFM15BR[13:8]	00_0000	PFM15 Brightness MSB
0×55	PFM16brLSB	[7:0]	PFM16BR[7:0]	0000_0000	PFM16 Brightness LSB
0x56	PFM16brMSB	[5:0]	PFM16BR[13:8]	00_0000	PFM16 Brightness MSB
0x57	ASICIDLSB	[7:4]	asic_id[3:0]	0011	Device ID of APE5030A LSB
		[3:0]	revision[3:0]	0000	Version of APE5030A
0x58	ASICIDMSB	[7:0]	asic_id[11:4]	0101_0000	Device ID of APE5030A MSB
0×59	POWER_CTRL	[0]	Standby	0	Standby power - saving power 0:normal operation 1:Analog circuit power off (MOS) and digital circuit gating clock
0×60	STATUS	[7]	CLKDCO_LOCK	0	1: notify Clock DCO frequency lock
		[6]	STAT OTW	0	1: notify over temperature warning
		[5]	STAT novsync	0	1: notify VSYNC is missing $>100 \mathrm{~ms}$
		[4]	STAT ov_temp	0	1: notify over temperature fault
		[3]	STAT open	0	1: notify open LED fault
		[2]	Short LED	0	1: notify short LED fault
		[1]	Short BIST	0	1: notify short BIST fault
		[0]	Power Good	0	0 : no power supply 1: device ok
0x61	BIST_SHORT_1	[7]	BIST_Short_8	0	Short LED detected with BIST on output 8-1 Read: 0 : no short LED detected 1: Short LED detected Write: 1: clear fault
		[6]	BIST_Short_7	0	
		[5]	BIST_Short_6	0	
		[4]	BIST_Short_5	0	
		[3]	BIST_Short_4	0	
		[2]	BIST_Short_3	0	
		[1]	BIST_Short_2	0	
		[0]	BIST_Short_1	0	
0×62	BIST_SHORT_2	[7]	BIST_Short_16	0	Short LED detected with BIST on output 16-9 Read: 0 : no short LED detected 1: Short LED at detected Write: 1: clear fault
		[6]	BIST_Short_15	0	
		[5]	BIST_Short_14	0	
		[4]	BIST_Short_13	0	
		[3]	BIST_Short_12	0	
		[2]	BIST_Short_11	0	
		[1]	BIST_Short_10	0	
		[0]	BIST_Short_9	0	
0×63	BIST_CONTROL1	[5]	BIST_EN_2	0	Short BIST enable for FB2: 0 : BIST disabled 1: Start shortled BIST2 test

Register Map (Cont.)

Register Address (hex)	Name	BIT	Label	Default	Description
0x63	BIST_CONTROL1	[4]	BIST_EN_1	0	Short BIST enable for FB1: 0: BIST disabled 1: Start shortled BIST1 test
		[3]	BIST_fast_time	0	short BIST up/down time step 0: 64uS 1: 128uS
		[2]	BISTsel_time	0	0: use bist_fast_time register value 1: use fbcounter_up_time / fbcounter_dn_time register values
		[1:0]	BIST_wait[1:0]	10	Wait after BIST target has been reached: 0 : no wait 01: wait 1 VSYNC pulse 10: wait 2 VSYNC pulses 11: wait 3 VSYNC pulses
0x64	SHORT_COMP_ CTRL1	[7:6]	short_debouncer[1:0]	11	00: 1 fault 01: 6 faults 10: 11 faults 11: 15 faults
		[5]	Short_retrial	1	0 : retrial function disabled 1: retrial function enabled Note: channels turned on every second
		[4]	Short_auto_off	1	0 : automatic turn off function disabled 1: automatic turn off channels of shorted group
		[3]	LED_short_en	1	0 : short LED detection disabled 1 : short LED detection for all channels enabled
		[2:0]	Short_level[2:0]	000	Short detection voltage based on LEDx voltage.

Register Map (Cont.)

Register Address (hex)	Name	BIT	Label	Default	Description
0x65	BRI_MINI	[7:0]	BRI_MINI	0010_1000	if PFM Brightness[7:0] < Mini Brightness[7:0] Mini Brightness[7:0] replace PFM Brightness[7:0] Ex. PFMBR[13:0] = 14'h0005, BRI_MINI[7:0] = 8 'h10 => BRI_MINI_ $\mathrm{ON}=1, \operatorname{PFMBR}[13: 0]=$ 14'h0010
0x66	HDR_mode	[7]	fb2_decay_off	0	0 : FB counter 2 decay time is defined by register decay_time 1: FB counter 2 decay time is infinite as long all high times in FB group 2 are 0
		[6]	fb1_decay_off	0	0 : FB counter 1 decay time is defined by register decay_time 1: FB counter 1 decay time is infinite as long all high times in FB group 1 are 0
		[4]	BRI_MINI_ON	0	DUTY minimum enable (depend on 0x65) 0 : disable 1: enable
		[3]	-	-	-
		[2:1]	FBcount_decay_time[1:0]	11	Decay time for power feedback control 00: 32 ms 01: 32 ms 10: 64 ms 11: 128ms
		[0]	sw_reset	0	Software reset 0 : normal operation 1: software reset bit (registers 0×01 to $0 \times 6 \mathrm{C}$ clear to default)

Register Map (Cont.)

Register Address (hex)	Name	BIT	Label	Default	Description
0x69	COMP_REG1	[7:0]	CompReg1CompReg8	0000_0000	Status of gate trip voltage comparator: 0 : Vgate < Vtrip 1: Vgate > Vtrip
0x6A	COMP_REG2	[7:0]	CompReg9CompReg16	0000_0000	Status of gate trip voltage comparator: 0: Vgate < Vtrip 1: Vgate > Vtrip
0x6B	BIST_IDAC1	[7:0]	BT1	1111_1111	Defines the IDAC1 target value for BIST
0x6C	BIST_IDAC2	[7:0]	BT2	1111_1111	Defines the IDAC2 target value for BIST
0x6D	ASW_VADC_TH_H	[7:0]	ASW_VDAC_TH[9:2]	1111_1000	MSB - BITS OF 10 bit Adaptive control VDAC Threshold ($0.78125 \mathrm{mV} /$ LSB)
0x6E	ASW_VADC_TH_L	[1:0]	ASW_VDAC_TH[1:0]	00	LSB - BITS OF 10 bit Adaptive control VDAC Threshold ($0.78125 \mathrm{mV} /$ LSB)
0x6F	ASW_BRI_TH_L	[7:0]	ASW_BRI_TH[7:0]	0000_0000	Adaptive control Brightness Threshold LSB (0.0061\%/LSB)
0x70	ASW_BRI_TH_H	[5:0]	ASW_BRI_TH[13:8]	10_0000	Adaptive control Brightness Threshold MSB (0.0061\%/LSB)

Function Descriptions (Cont.)

SPI Interface

For the data transfer a serial peripheral interface (SPI) is used. The SPI is configured to work only as SPI slave. If more than one driver is connected to a SPI master, they can be connected in a "Daisy Chain"-structure or a parallel structure.

SPI Daisy Chain Structure

All SPI slaves share the same clock (SCL) and chip select (xCS) signal. In that configuration all devices can be treated as one big shift register. The devices are automatically enumerated as described in the next section.
The APE5030A SDO pin was output 5V, when this pin want to use connection to micro controller then must noted to whether the MCU component can withstand 5 V .
When SPI daisy chain structure is using series type then the device N SDO pin must choose the open drain type.

Figure 7: SPI Daisy Chain structure

SPI Parallel Structure

All SPI slaves share the same input (SDI) output (SDO) and clock (SCL) signal. Every single device can be addressed via the chip select (xCS) signal. In this configuration every device has the "DevAddr $=0 \times 01$ ".
When SPI parallel structure was used then all device SDO pin must choose the open drain type.

Figure 8: SPI Parallel Structure

Function Descriptions (Cont.)

SPI Device Address Enumeration

The device address of each driver is automatically set by the position of the device in the chain. The first device has DevAddr $=0 \times 01$, the second device has DevAddr $=0 \times 02$ and so on. Device Addresses 0×00 and $0 \times 3 F$ are used for special broadcast writing commands described below.

SPI Protocol Data Types

When $\mathrm{xCS}=0$ all slaves will be activated. The addressing and data section is organized in byte packages. Each message can be built with the following Bytes:

B		Device Address [5:0]
Meaning		Description
Bit	Broadcast	$\mathrm{B}=1 \ldots$ Broadcast message to all devices (only WRITE) $\mathrm{B}=0 \ldots$ Normal message to one single device
B	Single byte	$\mathrm{S}=0 \ldots$ Block data read or write $\mathrm{S}=1 \ldots$ Single data transmission (only one byte)
S	Device Address	0×00 write/read same data to same register of all devices $(\mathrm{B}=1)$ 0×01 to 0x3E. Device addresses for device 1 to 62 $0 \times 3 F$ Write different data to same register of all devices $(\mathrm{B}=1)$
Device Address $[5: 0]$		

Nr_of_data

Defines the number of data bytes in the data frame if $S=0$

Nrofdata[7:0]			
Meaning			
Bit	Number of data bytes in frame	0×00 to 0xFF	Description
Nrofdata[7:0]	Number		

Register_address
Register address to be read or written

R/W		Register Address [6:0]
Bit	Meaning	Description
R/W	Read/Write	RW $=0$ write to register address RW=1 read from register address
Register Address[6:0]	Select register address	0×00 to 0x7F

Data

The data to be transferred

Data[7:0]			
Bit	Meaning		Description
Data[7:0]	Data	0×00 to 0xFF	

Function Descriptions (Cont.)

Time Characteristics

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{F}_{\text {CLK }}$	SCL frequency	0	-	10	MHz
t 1	xCS setup time	50	-	-	ns
t 2	xCS hold time	100	-	-	ns
t 3	xCS disable time	100	-	-	ns
t 4	SDI setup time	5	-	-	ns
t 5	SDI hold time	5	-	-	ns
t6	SCL rise time	-	-	15	ns
t 7	SCL falling time	-	-	15	ns
t8	SCL low time	40	-	-	ns
t9	SCL high time	40	-	-	ns
t 10	Output valid from SCL low	-	-	11	ns
t 11	SCL falling to $x C S$ rising edge	50	-	-	ns

Timing Characteristics: Shows the timing characteristics of the SPI Interface

SPI Input Timing

SPI Output Timing

Package Information

QFN7x7-48

-e |.

$\begin{aligned} & \mathrm{S} \\ & \mathrm{Y} \\ & \mathrm{M} \\ & \mathrm{~B} \\ & \mathrm{O} \\ & \mathrm{~L} \end{aligned}$	QFN7*7-48			
	MILLIMETERS		INCHES	
	MIN.	MAX.	MIN.	MAX.
A	0.80	1.00	0.031	0.039
A1	0.00	0.05	0.000	0.002
A3	0.20 REF		0.008 REF	
b	0.18	0.30	0.007	0.012
D	6.90	7.10	0.272	0.280
D2	5.50	5.80	0.217	0.228
E	6.90	7.10	0.272	0.280
E2	5.50	5.80	0.217	0.228
e	0.50 BSC		0.020 BSC	
L	0.35	0.45	0.014	0.018
K	0.20		0.008	

Note : 1. Followed from JEDEC MO-220 WKKD-4.

Carrier Tape \& Reel Dimensions

Application	A	H	T1	C	d	D	W	E1	F
QFN7x7-48	330.0 ± 2.00	50 MIN .	$\begin{gathered} 16.4+2.00 \\ -0.00 \end{gathered}$	$\begin{gathered} 13.0+0.50 \\ -0.20 \end{gathered}$	1.5 MIN.	20.2 MIN.	16.0 ± 0.30	1.75 ± 0.10	7.5 ± 0.10
	P0	P1	P2	D0	D1	T	A0	B0	K0
	4.0 ± 0.10	12.0 ± 0.10	2.0 ± 0.10	$\begin{gathered} 1.5+0.10 \\ -0.00 \end{gathered}$	1.5 MIN.	$\begin{gathered} 0.6+0.00 \\ -0.40 \end{gathered}$	7.30 ± 0.20	7.30 ± 0.20	1.30 ± 0.20

Devices Per Unit

Package Type	Unit	Quantity
QFN7x7-48	Tape \& Reel	2500

Taping Direction Information

QFN7x7-48

USER DIRECTION OF FEED

Classification Profile

Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
\quad Preheat \& Soak Temperature $\min \left(T_{\text {smin }}\right)$ Temperature $\max \left(T_{\text {smax }}\right)$ Time $\left(T_{\text {smin }}\right.$ to $\left.T_{\text {smax }}\right)\left(t_{s}\right)$	$\begin{gathered} 100^{\circ} \mathrm{C} \\ 150^{\circ} \mathrm{C} \\ 60-120 \text { seconds } \end{gathered}$	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 60-120 \text { seconds } \end{gathered}$
Average ramp-up rate $\left(T_{\text {smax }} \text { to } T_{P}\right)$	$3^{\circ} \mathrm{C} /$ second max.	$3^{\circ} \mathrm{C} /$ second max.
Liquidous temperature (T_{L}) Time at liquidous (t_{L})	$\begin{gathered} \hline 183^{\circ} \mathrm{C} \\ 60-150 \text { seconds } \end{gathered}$	$\begin{gathered} 217{ }^{\circ} \mathrm{C} \\ 60-150 \text { seconds } \end{gathered}$
Peak package body Temperature ($\left.\mathrm{T}_{\mathrm{p}}\right)^{*}$	See Classification Temp in table 1	See Classification Temp in table 2
Time ($\left.\mathrm{t}_{\mathrm{p}}\right)^{* *}$ within $5^{\circ} \mathrm{C}$ of the specified classification temperature $\left(T_{c}\right)$	20** seconds	30** seconds
Average ramp-down rate (T_{p} to $\mathrm{T}_{\text {smax }}$)	$6^{\circ} \mathrm{C} /$ second max.	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to peak temperature	6 minutes max.	8 minutes max.
* Tolerance for peak profile Temperature (T_{p}) is defined as a supplier minimum and a user maximum. ** Tolerance for time at peak profile temperature (t_{p}) is defined as a supplier minimum and a user maximum.		

Table 1. SnPb Eutectic Process - Classification Temperatures (Tc)

Package Thickness	Volume mm $^{\mathbf{3}}$ <350	${\text { Volume } \mathbf{~ m m}^{3}}$ $\geq \mathbf{3 5 0}$
$<2.5 \mathrm{~mm}$	$235^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
$\geq 2.5 \mathrm{~mm}$	$220^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

Table 2. Pb-free Process - Classification Temperatures (Tc)

Package Thickness	Volume mm $^{\mathbf{3}}$ <350	Volume mm $^{\mathbf{3}}$ $\mathbf{3 5 0 - 2 0 0 0}$	Volume mm $^{\mathbf{3}}$ $>\mathbf{2 0 0 0}$
$<1.6 \mathrm{~mm}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
$1.6 \mathrm{~mm}-2.5 \mathrm{~mm}$	$260^{\circ} \mathrm{C}$	$250^{\circ} \mathrm{C}$	$245^{\circ} \mathrm{C}$
$\geq 2.5 \mathrm{~mm}$	$250^{\circ} \mathrm{C}$	$245^{\circ} \mathrm{C}$	$245^{\circ} \mathrm{C}$

Reliability Test Program

Test item	Method	Description
SOLDERABILITY	JESD-22, B102	$5 \mathrm{Sec}, 245^{\circ} \mathrm{C}$
HOLT	JESD-22, A108	$1000 \mathrm{Hrs}, \mathrm{Bias} @ \mathrm{~T}_{\mathrm{i}}=125^{\circ} \mathrm{C}$
PCT	JESD-22, A102	$168 \mathrm{Hrs}, 100 \% \mathrm{RH}, 2 \mathrm{~atm}, 121^{\circ} \mathrm{C}$
TCT	JESD-22, A104	$500 \mathrm{Cycles},-65^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$
HBM	MIL-STD-883-3015.7	VHBM $\geqq 2 \mathrm{KV}$
MM	JESD-22, A115	VMM $\geqq 200 \mathrm{~V}$
Latch-Up	JESDD 78	$10 \mathrm{~ms}, 1_{\text {tr }} \geqq 100 \mathrm{~mA}$

Customer Service

Anpec Electronics Corp.

Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax: 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838

